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AB S TRAC T 

This  is  a  l a r g e l y  t u t o r i a l  l e c t u r e  on t h e  basic i d e a s  
of General  R e l a t i v i t y  - E i n s t e i n ' s  t h e o r y  of g r a v i t y  as  
curved  space-t ime - emphasiz ing t h e  p h y s i c a l  concep t s  and 
u s i n g  only elementary mathemat ics .  For t h e  slow motions  and  
weak g r a v i t a t i o n a l  f i e l d s  which we e x p e r i e n c e  on t h e  ear th ,  
t h e  main c u r v a t u r e  is t h a t  of t ime ,  n o t  s p a c e .  Recent 
exper iments  demonstrating t h i s  p r o p e r t y  ( ~ l l e y ,  C u t l e r ,  
Reisse, Will iams,  e t  a l l  1975 and Vessot  and  Levine ,  1976) 
w i l l  be b r i e f l y  r e v i e w e d .  

The e x t r a o r d i n a r y  s t a b i l i t y  of modern a tomic c l o c k s  
makes it n e c e s s a r y  t o  unders tand  and t o  i n c l u d e  t h e  
fundamental  effects of m o t i o n  and q r a v i t a t i o n a l  p o t e n t i a l  on 
c l o c k s  i n  many p r a c t i c a l .  s i t u a t i o n s .  These i n c l u d e  t h e  
NAVSTAR/GLobal P o s i t i o n i n g  System and t ime s y n c h r o n i z a t i o n  
u s i n g  u l t r a  s t a b l e  c l o c k s  t r a n s p o r t e d  by a i r c r a f t .  

I n  future system such a s  g l o b a l  time s y n c h r o n i z a t i o n  
u s i n g  c l o c k s  i n  law e a r t h  o r b i t ,  t h e  a c c u r a c y  may be l i m i t e d  
by u n c e r t a i n t i e s  i n  t h e  c a l c u l a t e d  p r o p e r  t i m e  of  t h e  
t r a v e l l i n g  clock, r a t h e r  t h a n  by i n t r i n s i c  c l o c k  
performance.  

I N T K I D U C T I O N  
This  t a l k  will be i n  t h e  same g e n e r a l  ve in  as one I gave a t  the  

t ime  of  the E i n s t e i n  Cen tenn ia l  t w o  and h a l f  years ago a t  t h e  33rd 
Annual Frequency C o n t r o l  Symposium ', s o  I a p o l o g i z e  t o  those of you who 

* 'Ihis paper i s  a n  e d i t e d  v e r s i o n  o f  a  t a p e  r e c o r d i n g  o f  t h e  i n v i t e d  
tutorial t a l k .  

C .  0 .  Alley,  " R e l a t i v i t y  and Clocks",  Proceedings ,  33rd Annual 
Symposium on Frequency Cont ro l ,  U.S .  Army E l e c t r o n i c s  Research and 
Development Command, Fort Monmnuth, N . J  ., pp 4 - 3 9 A  (1979) . Copies 
a v a i l a b l e  from E l e c t r o n i c  I n d u s t r i e s  Assoc ia t ion ,  200 1 Eye S t r e e t ,  N.W., 
Washington, D.C . 2 0 0 0 6 .  

Refe rence  shou ld  be made t o  t h i s  paper f o r  d e t a i l s  o f  some r e s u l t s  
given h e r e  a n a  fo r  further r e f e r e n c e s .  
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may  have heard t h a t  t a l k .  R u t  for a t u t o r i a l  t a l k ,  perhaps it is 
excusable,  o r  even d e s i r a b l e ,  t o  r epea t  important t h i n g s .  The emphasis 
he re  is  somewhat d i f f e r e n t  from Reference 1, however. 

The concept of p rope r  t ime i n  r e l a t i v i t y  i s  r e a l l y  c e n t r a l  t o  t h e  
whole sub jec t .  The proper  time i s  t h e  ord inary  t i m e  a c t u a l l y  kept by a 
clock,  i t s  own time, o r ,  i n  German, e i g e n z e i t .  The h igh  s t a b i l i t y  t h a t  
has  been achieved by t h e  time keeping community wi th  modern atomic 
c locks  a l lows  t h e  e f f e c t s  of motion and g r a v i t y  t o  be a c t u a l l y  measured, 
with r e s u l t s  i n  agreement with E i n s t e i n ' s  p red ic t ions .  E i n s t e i n ' s  i deas  
a r e  no longer  j u s t  a mat te r  of g r e a t  s c i e n t i f i c  i n t e r e s t ,  a c t u a l l y  
forming t h e  basis of t h e  view of the universe  t h a t  we now have from 
modern astronomy, but  a l s o  a mat te r  of p r a c t i c a l  engineer ing  concern,  
These timekeeping a p p l i c a t i o n s  are the f i r s t  p r a c t i c a l  a p p l i c a t i o n s  of 
General R e l a t i v i t y  which go beyond Newtonian g r a v i t y .  

?he s u b j e c t  can understood.  I n  t h e  p a s t ,  t h e  sub jec t  was 
l a r g e l y  taken over  by mathematicians, from about 1920 u n t i l  t h e  
1950's.  me c e n t r a l  phys i ca l  i deas  were r a r e l y  brought t o  the fo re .  
Tne ideas  were obscured by t h e  !Ensor Calculus with a l l  of i t s  b r i s t l i n g  
i n d i c e s  and t h e  h igher  mathematics a s soc i a t ed  with d i f f e r e n t i a l  
geometry. The actual way i n  which E ins t e in  got t o  t h e s e  concepts was 
gene ra l ly  ignored i n  t h e  t each ing  of t h e  sub jec t  (at t h e  few p laces  
where it was t a u g h t )  and those  of us  i n  t h e  academic community have t o  
t a k e  some r e s p o n s i b i l i t y  f o r  no t  having understood t h e s e  th ings  proper ly  
and for not  having t augh t  them t o  many genera t ions  of engineer ing  and 
phys ics  s tuden t s .  But t h a t  s i t u a t i o n  has now changed. 

I n  a d d i t i o n  t o  t h e s e  prac t ica l .  a p p l i c a t i o n s ,  many modern 
d i s c o v e r i e s  i n  a s t ropkys i c s  r equ i r e  t h e  use of  General R e l a t i v i t y  i n  
o rde r  t o  comprehend them. There's t h e  whole not ion  of compact o b j e c t s  
with the extreme being t h e  black ho le s  which probably e x i s t .  They may 
be t h e  power sources  of quasa r s .  The energy conversion r e s u l t i n g  from 
mat te r  f a l l i n g  down t h e  deep p o t e n t i a l  wel l  of a black hole  is something 
l i k e  30% of the r e s t  energy compared w i t h  only 0.7% f o r  thermo-nuclear 
fu s ion .  The expanding un ive r se  could  have been p red ic t ed  by Eins te in ,  
except  t h a t  it was uncongenial t o  t h e  world view i n  t h e  t e e n s  of ou r  
century,  and he modified h i s  equat ions  t o  avoid it. X t  w a s  probably h i s  
g r e a t e s t  mistake ( i n  his own eva lua t ion )  but  General R e l a t i v i t y  does 
desc r ibe  i t s  q o w t h  from t h e  "Big Bang". 'Ihe changes i n  t h e  o r b i t  cd 

2 t h e  Binary Pu l sa r  , revea led  by p r e c i s e  t iming of i t s  p e r i o d i c  r a d i o  
pu l se s  with atomic clocks,  seems t o  show the emission of t h e  g rav i ty  
waves pred ic t ed  by General R e l a t i v i t y .  W e  w i l l  h ea r  more this af te rnoon 
about  a t tempts  t o  d e t e c t  low frequency g rav i ty  waves l e f t  from t h e  ear1.y 

J. M .  Weisberg, J. H. w y l d r ,  and L. H. Fowler, "Grav i t a t i ona l  Waves 
from an O r b i t i n g  Pulsar" ,  S c i e n t i f i c  American, Vol, 245, N o .  4, pp. 74 
-82 (October,  198 1)  . 



un ive r se ,  using t h e  atomic clock c o n t r o l l e d  t r a c k i n g  of i n t e r p l a n e t a r y  
probes,  opening a  new window on t h e  universe ,  i f  s u c c e s s f u l .  

Now, let me g ive  you some good in t roduc to ry  r e f e r ences .  I: like t o  
approach t h e  s u b j e c t  from an h i s t o r i c a l  po in t  of view, t h e  way I t h i n k  
E i n s t e i n  a c t u a l l y  developed i t .  There's a  great hook by Banesh I-hffrnann 
c a l l e d  Albert Eins t e in :  Creator  and Rebel (PJ.ume Rooks, 1 9 7 3 ) .  I 
recommend t h i s  t o  a l l  of f ry  s t uden t s  and I recommend it t o  you t o  read 
both f o r  E i n s t e i n ' s  phys ics  and f o r  h i s  l i f e .  Niyel Calder has r e c e n t l y  
w r i t t e n  a popular  book c a l l e d  E i n s t e i n ' s  Universe (Penguin Rooks, 1979) 
which was made i n t o  a two-hour BBC t e l e v i s i o n  f i l m  of t h e  same name, 
which i s  highly  recommended. I ' m  going t o  use a n  approach t o  r e l a t i v i t y  
c a l l e d  t h e  k-calculus  by i t s  developer ,  Hermann Rondi.. I t  i s  descr ibed  
in a book c a l l e d  R e l a t i v i t y  and Common S n s e  (Dover Books, 1980)  and  i n  
another, ~ s s u m p t i o n  and Myth i n  Physical  'Illeory (Cambridge Unive r s i t y  
P re s s ,  1967) . On t h e  a s t rophys i c s ,  t h e r e  a r e  e x c e l l e n t  baoks by Robert 
Wall, Space Timeand Gravi ty:  Theory of t h e  "Big Bang" and Black m l e s  
(Un ive r s i t y  of Chicago Press ,  1977) ,  and by Roman and Hannelore Sexl ,  
Whi te  Dwarfs and Black Holes (Academic Press, 1979) .  

The p l an  of t h e  t a l k  is  the  fol lowing.  T. w i l l  g ive you an 
i n t r o d u c t i o n  t o  General R e l a t i v i t y  by a d d i n g  g r a v i t y  t o  s p e c i a l  
r e l a t i v i t y  through E i n s t e i n ' s  P r i n c i p l e  of Equivalence. This is t h e  
h i s t o r i c a l  approach I mentioned. %en I will discuss some r e c e n t  
experiments  which have measured t h e  r e l a t i v i s t i c  e f f e c t s  on c locks .  
This inc lude  experiments w i t h  a i r c r a f t  a n d  l a s e r s  i n  which Len Cut l e r  
and I co l l abo ra t ed  with some of t h e  s t uden t s  and s t a f f  a t  Maryland, with 
t h e  support  of t h e  Navy and A i r  Force, and,  very b r i e f l y ,  t h e  rocke t  
probe experiment with a hydrorjen maser and  microwave frequency 
de t ec t i on ,  which Bob Vessot and  Marty Levine have done with t h e  s u p p r t  
of NASA. Fina l ly ,  K w i l l  talk about the  influence nf t he se  effects i n  
some a c t u a l  systems: t h e  NAvsTA~/C,lobal Pos i t i on ing  System, t h e  L A S S  
(Laser  Synchronizat ion from S ta t i ona ry  O r b i t  experiment,  and a  
technique c a l l e d  t h e  S h u t t l e  Time and Frequency Transfer  (STIFT) ,  which 
some of us a r e  p lanning  and hoping t o  persuade NASA t o  develop. The 
r e l a t i v i s t i c  e f f e c t s  on c locks  t r anspo r t ed  by a i r  c r a f t  w i l l  also be 
d i scus sed .  

REVIEW O F  SPECIAL N L A T L V L  TY 

Figure 1 shows E i n s t e i n  i n  h i s  study a t  the  age of ahout 40,  
s e v e r a l  yea r s  after he completed General R e l a t i v i t y .  (Some of us  t a k e  
great  so l ace  from t h e  d i s o r d e r l i n e s s  of h i s  she lves  .)  E i n s t e i n  began t o  
t h i n k  about  r e l a t i v i t y  when he w a s  16 years  old. Fiyure 2 shows h im  a t  
age 16 i n  a classroom i n  Aarau, Switzerland (he  i s  on the  far r i g h t ) .  
He began t o  t h ink  a long  t h e  Lines of:  "What would happen i f  I could  
c a t c h  up with a b e a m  of Light? Suppose I were looking a t  a mir ror  and 
could run with t h e  speed of light, what would I see?"  A t  his l a s t  
l e c t u r e  i n  Pr ince ton  i n  1954, before  he died i n  1955, I was p r i v i l e g e d  



Figure 2 

t o  be p re sen t  when he reminisced 
about  some of these things. He 
mentioned t h a t  h i s  independent 
s tudy  o f  Maxwell's Elec t ro-  
magnetic Theory as an under- 
g radua te  gave him the  answer: 
t ha t  i f  you could catch up with a 
beam of l i q h t ,  you would s e e  a 
s t a t i c  e l e c t r i c  f i e l d  and a 
s t a t i c  magnetic f i e l d  a t  r i g h t  

F igure  1 ang le s  t o  each o the r ,  with no 
charges and no c u r r e n t s  

p r e s e n t .  B u t  Maxwell's t heo ry  doesn ' t  alZm t h a t .  Therefore,  you can  
never catch up with 1+43ht. N o  mat te r  how f a s t  you move, it recedes w i t h  
the  speed c = 3 x 10 m/sec. 7his was one of t h e  real. clues t o  his 
r e a l i z a t i o n  a t  t h e  age of 26,  a t  t h e  Pa ten t  O f f i c e  i n  Bern, Switzer land 
(F igu re  3 ) ,  t h a t  t ime i s  n o t  abso lu t e ,  and t h a t  t h i s  i s  t h e  key t o  the 
ques t ion :  I b w  do you r e c o n c i l e  the c l a s s i c a l  P r i n c i p l e  of R e l a t i v i t . ~ ,  
t h a t  any i n e r t i a l  observer  should formulate  i n  the  same way t h e  l a w s  o f  
phys ics ,  with t h e  no t ion  t ha t  t h e  speed of l i g h t  should be t h e  same f o r  
all i n e r t i a l  observers?  

E i n s t e i n  wanted t o  have t h i s  r e s t r i c t e d  P r i n c i p l e  of R e l a t i v i t y  
( r e s t r i c t e d ,  t h a t  is, t o  i n e r t i a l  obse rve r s )  i nc lude  a l l  of phys ics ,  n o t  
just mechanical physics:  electro-magnetism and eve ry th ing  e l s e .  He also 
wanted to  say t h a t  t h e  v e l o c i t y  a f  l i g h t  should be the  same f o r  a l l  
obse rve r s  independent o f  t h e  speed of t h e  source. Now these 
requirements  seem incompatible ,  because, if you imagine two space 
s h u t t l e s  going by each o t h e r  ( Figure 4) , each with a light source i n  t.he 
c e n t e r  of its bay, which e m i t s  beams of l i g h t ,  forward and hackward, A 
would want t o  s ee  t h e  two waves spreading out  wi th  t h e  v e l o c i t y  c  i n  
each d i r e c t i o n .  But t hen  A would observe, from h i s  p o i n t  of view, t h a t  
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in B ' s  system t h e  l i g h t  going forward would be t r a v e l l i n q ,  with r e s p e c t  
t o  B, w i t h  a s m a l l e r  v e l o c i t y  than  the l i y h t  goinq backward. Rut B 

ought t o  be able t o  main ta in  t h e  same p o i n t  of view as  A !  How do you 
r e c o n c i l e  t h e s e  t h i n g s ?  Well, i n  1905 ,  a t  t h e  aqe o f  2 6 ,  accorr l inq t o  
Hoffman, E i n s t e i n  sat  blt u p r i g h t  i n  bed one morninq, a f t e r  having 
pondered t h e s e  m a t t e r s  f o r  t e n  y e a r s ,  with t h e  r e a l i z a t i o n  that time i s  
not a b s o l u t e ;  t h a t  t h e  s i m u l t a n e i t y  of s e p a r a t e d  e v e n t s  is r e l a t i v e  t o  
t h e  inertial observer. This was t h e  key t o  r e c o n c i l i n g  t h i s  whole 
thing. It  h a s  had profound consequences f o r  all of phys i c s .  Let's 
formulate these ideas i n  t e r m s  of Minkowski space-t ime diagrams, and t h e  
so-called k - c a l c u l u s  . 

In Figure 5 time is  plotted v e r t i c a l l y  i n  u n i t s  of nanosecnnds,  and 
d i s t a n c e  h o r i z o n t a l l y  i n  u n i t s  of 30 c e n t i m e t e r s ,  so t h a t  a l i g h t  p u l s e  
has a s l o p e  o f  45O. The dashed l i n e  is the worldline of a l i g h t  pulse 
that would be  s e n t  o u t  and r e f l e c t e d  back f r o m  some e v e n t .  Events  are 
t h e  raw m a t e r i a l s  of r e l a t i v i t y :  the  t i m e  and p l a c e  where sornetllinq 
happens.  I f  you send the l i g h t  pulse o u t  a t  a c e r t a i n  t ime,  t and get  ? '  
the pulse back a t  a t ime ,  t3, t h e n  you would s a y  you'd be send lng  o u t  a t  
t, = t - x / c ,  and g e t t i n g  it back a t  t3 = t 4 x / c ,  where x i s  t h e  
p o s i t i o n  c o o r d i n a t e  and t i s  t h e  t i m e  c o o r d i n a t e  of the r e f l e c t i o n  
event. The time of r e f l e c t i o n  f o r  you is  n a t u r a l l y  t a k e n  as midway 
between the emiss ion  and r e c e p t i o n  events, 



This is  E i n s t e i n ' s  o r i g i n a l  p r e s c r i p t i o n  for de f in ing  time at a d i s t ance  
when comparing c locks  which a r e  not  ad jacent  to one another ,  which he 
gave i n  1905 i n  h i s  paper on r e s t r i c t e d  r e l a t i v i t y .  You get t h e  
d i s t ance  of an event  by taking t h e  d i f f e r ence  between t h e  emission and 
r ecep t ion  t imes and multiplying by t h e  speed of l i g h t  and d iv id ing  by 2: 

?his is  t h e  basis for  a l l  the l a s e r  ranging measurements, i nc lud ing  the 
3 ranging  t o  corner  r e f l e c t o r s  on the  moon , whose motion has  been 

monitored s i n c e  1969 with a n  accuracy of t e n  cent imeters  o r  so. It 
t u r n s  out  t h a t  this rnethoa of comparing time between d i s t a n t  c locks is 
not only conceptua l ly  very clear, but i t ' s  practically t h e  best way, t h e  
most accu ra t e  way, of  comparing d i s t a n t  c locks which we know a t  t h e  
p re sen t  t ime . 

Modern observers  now would 
be equipped with atomic c locks ,  
short pulse  l a s e r s ,  f as t  photo 
d e t e c t o r s ,  and event  t imer s  t o  
measure t h e  epoch of a r r i v a l  of A 
l i g h t  pu l se s .  Let's cons ider  two 

€3 

such observers ,  A and B, B moving t '  
with some r e l a t i v e  v e l o c i t y  with 
respect to A, as  shown i n  Figure 
6 .  A sends ou t  pulses with t h e  - 
s e p a r a t i o n  T hetween them, and 
i t ' s  c l e a r  t h a t  t hey  w i l l  be 
received by B with t h e  sepa ra t ion  
kT, because of h i s  motion. It i s  
very easy (See R e f .  1) t o  show x 
t h a t  k, t h i s  r e l a t i v i s t i c  Doppler 
Factor, is -- us of E L n t S  which i 

c regards as simul tansous 

k = [  W I  th his origin event t=O 
1 - v/c 

Now, how would A de f ine  his a x i s  
of s imul tane i ty?  ( R e f e r  t o  Figure 
6)  Fk would send o u t  a pulse  and - 
g e t  it r e f l e c t e d  back. I f  it i s  
s e n t  ou t  a t  t h e  same t i m e  before 
h i s  o r i g i n  event  a s  t h e  time he 

F i g u r e  6 

C .  0 .  Alley, "Apollo 11 Laser Ranging Wtro-Ref lec tor  ( L R : ~ )  
Experiment: One Researcher 's  Personal  Account", i n  Adventures in 
Experimental Physics ,  e d i t e d  by B.  Maglich, a 1972. 



g e t s  it back a f t e r  h i s  o r i q i n  
event ,  he would s a y  t h a t  the  
event  i s  simultaneous w i t h  h i s  
o r i g i n  event. i s  procedure 
defines h i s  X a x i s ,  t h e  locus of 
events which he reqards a s  
s imultaneous with h i s  o r i g i n  
even t .  B can  do t h e  same 
t h i n q .  But both h and R measure 
t h e  same speed of l i g h t ,  
r e p r e s e n t e d  by t h e  dashed l i n e s  
i n  Figure 7, so t h a t  when R s e n d s  
o u t  h i s  pu lse  and p t s  it hack 
the same time before  his o r i g i n  
event ( t aken  t o  be the  same as 
A's) as  af te rward ,  t h e  
r e f l e c t i o n  must occur as shown i n  
F igure  7 .  This procedure de f ines  
a tilted space a x i s ,  which is  B ' s  
locus  of events  which a r e  
simuLtaneous w i t h  respect t o  h i s  
o r i g i n  event .  So, B's t ime a x i s  
i s  t i l t e d  w i t h  respect t o  A ' S  
t i m e  ax i s ,  and  h i s  space a x i s  is 
t i l t e d  with respect to A's space 
axis. This i s  the famous 
Minkowski diagram. Hermann 
Minkowski was one of E i n s t e i n ' s  
t e a c h e r s  a t  the t e c h n i c a l  
u n i v e r s i t y  in Zurich, who was 
very neqa t ive ly  impressed with 
Einstein a s  a  s t u d e n t ,  but l a t e r  
came t o  recognize h i s  

Figure 7 

  ink ow ski's Absolute Space-Time (1907) 

different ways 

-Light speed some 
for oll 

great F i g u r e  8 
accomplishments. It  was Minkowski who 
contributed the  space-time geometry to t h e  
phys ics  of r e l a t i v i t y  t h a t  Eins te in  h a d  
developed. 

We've had observers  A and B, now 
suppose we have C. If C i s  moving t o  t h e  
L e f t  then h i s  a x i s  of s imu l t ane i ty  is  
t i l t e d  down, as shown i n  Figure 8 .  The 
s e v e r a l  o h s e r v e r s  w i l l  r e g i s t e r  different 
relative times for t w o  events. Consider 
the events, label led  1 and 2 i n  Figure 9 .  
'Ihen it's c l e a r  that A would regard t h e s e  
as occurring a t  t h e  same t i m e  since t h e y ' r e  
on his a x i s  of s imu l t ane i ty .  R u t  f o r  B, h e  F i g u r e  9 
has  t o  project over p a r a l l e l  to h i s  ax i s  of 



s imul tanei ty  and it i s  c l e a r  t h a t  Went 2 occurs before w e n t  1, 
according t o  B's time. C must pro jec t  p a r a l l e l  t o  his a x i s  o f  
s imul tanei ty  and he w i l l  conclude t h a t  Event 1 occurs before Went 2 .  
.% they don ' t  agree on which occurs f i r s t .  They a l s o  don ' t  aqree on t h e  
magnitude of t h e  time i n t e r v a l  between two events.  lbey won't agree 
e i t h e r  on the  d is tance  interval .  between t w o  events .  But Minkowski 
showed t h a t  they do agree on something! What they agree on is the so- 
c a l l e d  invar i an t  i n t e r v a l ,  As, which is given by: 

2 2 
= c (At') - (Ax') 

2 
(B) 

where unprimed, primed, and double-primed r e f e r  t o  A, B, and C 

respectively. They a l l  get the same value when they make this 
combination of time and space i n t e r v a l s .  The quant i ty  A s  is invaria.nt 
with respect  t o  a change of i n e r t i a l  observers with t h e i r  respect ive  
t i m e  and space coordinates.  I t ' s  a very important r e s u l t .  It forms t.he 
bas i s  f o r  E ins te in ' s  whole development of gravi ty  as  curved space-time. 

E ins te in  was of ten  tempted t o  change the name of  the theory of 
r e l a t i v i t y  t o  t h e  theory of invariance because it wasn't  so much, i n  h i s  
view, the  way d i f f e r e n t  observers see  th ings  i n  r e l a t i v e  fashion, but 
what is unchanged f o r  the various observers.  But t h a t  suggested change 
of name never caught on. It i s  not hard t o  demonstrate the  invariance 
of the  i n t e r v a l .  Because of l imi ted  time, I'm not going t o  do it. It 
can be done i n  only a f e w  a lqebra ic  steps using the  k-calculus and 
space-time diagrams (See Ref. 1 ) .  You don't have t o  introduce L o r e n t z  
t ransformations,  and o the r  complications t o  prove it. 

Here's how Minkowski described h i s  r e s u l t  i n  a talk in 1908: 

"Tne views of space and time which I wish t o  l ay  
before you have sprung from t h e  s o i l  of 
experimental physics and therein l i e s  t h e i r  
s t rengkh.  Henceforth, space by i t s e l f  and time by 
i t s e l f  a r e  doomed t o  fade away i n t o  mere shaaows 
and only a kind of union of t h e  t w o  w i l l  p r e se rve  
an independent reality ." 

He's t a l k i n g  about h i s  s l i c i n g  up of space-time with the  t i l t e d  axes i n  
Figure 8. I th ink  of the  axes t i l t i n g  for d i f f e r e n t  observers l i k e  the 
blades of a p a i r  of s c i s s o r s  pivoted a t  the o r ig in .  

Now we have a l l  we need i n  order  t o  deduce t h e  e f f e c t  OF motion on 
c locks .  Consider Figure 10, which shows the  worldline of a moving clock 
with the  events  corresponding t o  a couple of t i c k s  on t h e  clock i n  t h e  



space-time diagram f o r  some The E f f e c t  of  M o t ~ o n  on Clocks 

i n e r t i a l  ohserver .  Between t h e  
two ticks, the  i n e r t i a l  observer  
w i l l  say t h e r e ' s  a c e r t a i n  t 

i n t e r v a l  of time, A t ,  which w e  ,World L ~ n e  o f  
moving clock Reading of rnovlng 

w i l l  c a l l  the  coord ina te  t ime clock 1 5  ~ t s  own t ~ m e ,  
i n t e r v a l .  The moving observer ,  Proper T ~ m e  

,--Y Clock T ~ c k s  of course, w i l l  r ecord  t h e  J' ( n t , A x )  
Dencte by r 

i n t e r v a l  between his own ticks ( A r ,  0 )  
and we w i l l  c a l l  t h a t  t h e  
i n t e r v a l  of proper  t ime,  A T  . AX x 

1/11 

For t h e  coord ina te  observer  
t h e r e ' s  a l s o  a space i n t e r v a l  
between t h e s e  two ticks: the Figure 1I) 
c lock i s  moving. Rut for the  
c lock  i t s e l f  t h e r e  i s  no s p a c i a l  d i f f e r ence  because the clock is always 
a t  the  o r i g i n  of i ts  own ins tan taneous  coord ina t e s .  So, i n  terms of 
this notion of proper  t ime, we can deduce the d i f f e rence  between it and 
coord ina te  t ime hy appea l inq  t o  t h e  invar iance  of the i n t e r v a l .  

2 2 2 2 2 
I = c2  ( A t )  - (Ax) = c ( A t '  ) - ( A X '  

1 where t h e  prime now r e f e r s  to the moving c lock .  R u t  we've agreed t o  
1 i d e n t i f y  A t '  with h ,  t h e  proper time i n t e r v a l ,  and we've agreed : t h a t  Ax1= 0,  so i f  w e  s u b s t i t ~ x t e  t h a t  i n t o  the  equat ion,  and f u r t h e r  
I note  t h a t  Ax = v A t  where v i s  the  ins tan taneous  v e l o c i t y ,  w e  have 
t 

2 2 2 2 2 2 
( C  A t )  - ( A X )  = c ( A t )  - (vAt)  

A T  = [ 1 - v2 /c2f'2At 
proper  coord ina te  
t ime 
i n t e r v a l  

t ime 
i n t e r v a l  

T h i s  famous equat ion ,  of course, i s  one of 
t h e  basic equat ions  t h a t  we w i l l  be dea l ing  
with. If we cons ider  t w o  c locks ,  A and R ,  
which  a r e  moving along d i f f e r e n t  paths  i n  
space-time, as shown i n  Figure 1 1 ,  t h e  B 
e l apsed  proper time for each will be 0 ,  / 

"Your t ~ m e  1s d i f f e r e n t .  "Your t ime i s  not  my t ime ." If 
not my t ~ r n e *  

~e synchronize the c locks  when thay  a r e  / 

together and  they  then go on d i f f e r e n t  pa ths  
and r e j o i n ,  one must eva1uat.e a n  i n t e y r a l  t o  
qet t h e  e lapsed  proper  time fo r  each clock 
with respect t o  t h e  coord ina te  time for s o m e  

rl;; 
F i g u r e  11 

i n e r t i a l  observer .  



r ( f i n a l )  
A 

r ( f i n a l )  
B 

T ( i n i t i a l )  
A 

T ( i n i t i a l )  
B 

And s ince  vA2 w i l l  be d i f f e r e n t  from vg2 over the  pa ths ,  these  a r e  n o t  
equal .  mere's a route  dependence for  proper time. 

Eins te in  recognized these  implicat ions f o r  
clocks i n  1905, and he a c t u a l l y  made a predic t ion  
and suggested an experiment. Ek said t h a t  a c lock 
(excluding one whose r a t e  depends on the l oca l  value r a - - - - - ~  

of the  apparent acceleration of gravi ty ,  l i k e  a 
pendulum clock) a t  the  Equator w i l l  run slow with 

@ L 

r e spec t  t o  a s imi la r  clock a t  the  Pole, because of -0.46 k m / s  
the su r face  ve loc i ty  produced by the  e a r t h ' s  
r o t a t i o n ,  a s  shown i n  Figure 1 2 .  I f  you p u t  i n  the 
value 0.46 kilometer per  second f o r  the equatorial 
surface velocity, you get 102 nanoseconds per  day, F igure  1 2  
according t o  t h e  time d i l a t i o n  equation f o r  the  
d i f ference  i n  r a t e  between a n  equa to r i a l  clock and a polar  c lock.  Tf 
one could have done t h a t  experiment i n  1905  -- i f  s u f f i c i e n t l y  s t a b l e  
clocks had ex i s t ed  then -- a d i f f e r e n t  r e s u l t  would have been obtained 
than he predicted:  a n u l l  r e su l t !  His 1905  predic t ion  ignores the 
e f f e c t  of g rav i ty .  It was t o  be tw years  before he discovered t h e  
e f f e c t  of gravi ty  on time a s  a consequence of h i s  famous Pr inc ip le  of 
Equivalence. I w i l l  come back t o  t h i s  quest ion and descr ibe  an  
experiment we've done recent ly  t ranspor t ing  clocks from Washington, D.C . 
t o  mule, Greenland and hack. 

I'd Like t o  quote from the Presidential.  Address at the  American 
Association f o r  t h e  Advancement of Science i n  1911 by Professor W .  F. 

Magie of Princeton Universi ty.  

"I do not be l ieve  t h a t  the re  is any man now l i v ing ,  
who can a s s e r t ,  w i t h  t r u t h ,  t h a t  he can conceive of 
time, which i s  a funct ion  of veloci ty."  

That was six years a f t e r  E ins te in ' s  paper of 1905 by which time most of 
t h e  leading p h y s i c i s t s  had accepted his ideas.  But t o  this day, the re  
are  people who do not  be l ieve  t h a t  clocks behave i n  t h i s  fashion. 

I N C L U S I O N  OF GRAVITY: THE PRINCIPLE OF EQUIVALENCE 

Let me now turn t o  g rav i ty .  H w  does g rav i ty  get i n t o  t h e  
r e l a t i v i t y  p ic ture?  % i s  is an excerpt from an essay t h a t  Einstei.n 
wrote i n  1 9 1 9  t h a t  was published i n  the  New York Times when h i s  papers 
began t o  be ed i t ed  i n  1972 (he  was r e c a l l i n g  what he was doing i n  1 9 0 7 ) ;  



"At that point t h e r e  came t o  m e  t h e  happ ie s t  
thought of my l i f e  in t h e  fol lowing Form: J u s t  a s  
i n  the  case where an e l e c t r i c  f i e l d  i s  induced by 
e lec t romagnet ic  induct ion ,  t h e  g r a v i t a t i o n a l  f i e l d  
s i m i l a r l y  has only a r e l a t i v e  ex i s t ence .  Thus, for 
an observer  i n  free f a l l  f rom t h e  roof of a house, 
t h e r e  exists, dur ing  h i s  f a l l ,  no g r a v i t a t i o n a l  
f i e l d ,  a t  l e a s t  no t  i n  h i s  immediate v a c i n i t y .  If 
t h e  observer  r e l e a s e s  any objects, they w i l l  remain 
r e l a t i v e  t o  him i n  a s t a t e  of res t  o r  i n  a s t a t e  of 
uniform motion independent of t h e i r  p a r t i c u l a r  
chemical and phys i ca l  nature. 'Jhe observer  i s  
t h e r e f o r e  j u s t i f l e d  i n  cons ider ing  h i s  s t a t e  a s  one 
of rest." 

?his  is Einstein's own statement  of t h e  P r inc ip l e  of Fquivalence between 
an a c c e l e r a t e d  system and a system i n  a  g r a v i t a t i o n a l  f i e l d .  

There is  a s t o r y ,  probably apocryphal, t h a t  while E ins t e in  was a t  
the  Pa ten t  Of f i ce  i n  Bern,  a workman fell off of t he  roof of a  house and  
r epo r t ed  t h a t  h i s  t o o l s  f e l l  a l o n g  with him. They a l l  landed i n  bushes, 
and so he survived t o  t e l l  t h e  t a l e ,  thereby in f luenc inq  E ins t e in .  But 
I th ink  t h a t ' s  r e a l l y  not t r u e .  

In a system f a l l i n g  f r e e l y  

I 

F r e ~  Toll 

1 under t h e  i n f luence  of g r a v i t y ,  
t h e r e  is no l o c a l  g r a v i t a t i o n a l  N() L ocal 

Grnv~tatlonol 
field. Of course,  w e ' r e  very 

I F lc ld1  
fami l i a r  w i t h  t h i s  now, F r o m  t h e  
space f l i g h t s  of t h e  Apollo 
Program, the  Skylab,  wace 1 v 
S h u t t l e  and t h e  Sovie t  Soy i l z  k! A 
spacec ra f t ,  and so  on ,  n b j e c t s  
t h a t  are put  o u t  i n  f r o n t  of a n  
a s t r o n a u t  w i l l  s t a y  t h e r e ,  a s  

1, I ;\ 

l( .. ~ r c l v l ~ b  
shown i n  t h e  upper l e f t  p a r t  of 
Figure 13.  I'm t o l d  t h a t  on t h e  
Skylab, some of t h e  a s t r o n a u t s  F i g u r e  1 3  
made a  baske tba l l - s i ze  drop of 
water ,  which would j u s t  s t a y  t he re ,  h e l d  toqe ther  by surface t ens ion  
(and of course o s c i l l a t i n y  just a h i t ) .  Conslder now, i n  a region where 
g r a v i t y  i s  not p re sen t ,  a n  acce l e ra t ed  lab ,  an "Aclab", which is pushed 
by a rocket  engine .  Then, ir you r e l e a s e  o b j e c t s  of whatever 
composition t h e y  would seem t o  approach the  f l o o r  i n  t h e  same way, 

equivalent t o  w h a t  you would see  i n  a g r a v i t a t i o n a l  l a h ,  "Gravlab",  i n  
the presence of a g r a v i t a t i o n a l  f i e l d ,  f o r  example, on the  su r f ace  of 
t h e  e a r t h .  There have b e e n  many experiments showing t h a t  a l l  o b j e c t s ,  
whatever t h e i r  composition, f a l l  ( i n  a vacuum) with the  same 



acce le ra t ion .  I n  technical language, one says t h a t  the  i n e r t i a l  mass is 
t he  same as the  g r a v i t a t i o n a l  mass. In recent  years ,  t h i s  has been 
shown by R. H. Dicke and by V. Braginsky t o  be va l id  t o  parts in 
10'' t o  10". Lunar l a s e r  ranging has shown t h i s  a l s o  t o  be t r u e  for 

6 t h e  earth and moon f a l l i n g  t o  t h e  sun, with t h e  same prec is ion  . 
Eins te in ' s  idea w a s  not  t o  s t i c k  with t h e  mechanical p roper t i e s  only but 
t o  ask what a r e  the consequences of the  Pr inc ip le  of Quiva lence  for 
o the r  parts of physics,  i n  
p a r t i c u l a r  f o r  electromagnetic  Wovef ron t s  
phenomena, which inc ludes  a 
light. Suppose you had l i g h t  
sent across  t h i s  "Aclab", a s  
shown i n  Figure 14. Think of it 
as rows of marching s o l d i e r s  
corresponding t o  t h e  

I I I 
wavefronts . The lab i s  "Aclab" "Grevlab" 

accelera ted ,  so it would appear 
ins ide  it a s  though t h e  l i g h t  
h e a m  were being bent. I f  the  F igure  14 

equivalence idea is  t r u e  then i n  
a g r a v i t a t i o n a l  f i e l d ,  you would see t h i s  bending of l i g h t ,  and the  
marching s o l d i e r  analogy t e l l s  you t h a t  the  s o l d i e r s  a t  t h e  top would 
have t o  move faster than those a t  the  bottom i n  order t o  make the  
curve. So you p red ic t  t h a t  l i g h t  pa ths  should be bent by a 
g r a v i t a t i o n a l  f i e l d ,  and t h a t  t h e  speed of l i g h t  increases  with the  
he igh t .  m e r e ' s  n o  mathematics i n  t h i s  deduction a t  a l l ,  j u s t  physical 
ideas .  

There's a l i t t l e  mathematics needed t o  deduce t h e  p roper t i e s  of 
clocks i n  a g r a v i t a t i o n a l  f i e l d ,  Suppose you have t h i s  "Aclab" with a 
low clock on the  f l o o r  and a high clock on the  c e i l i n g  and you a r e  
exchanging l a s e r  pulses  between them, a s  displayed i n  Figure 15. W e  can 
c a l c u l a t e  what would happen i n  t h i s  s i tua t ion ,  and 1'11 do it i n  j u s t  a 
moment. If t he  "Eravlabl' is  equivalent  t o  t h e  "Aclab", then what we 
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c a l c u l a t e  i n  t h e  "Aclah" should 
apply f o r  t h e  "Gravlab", and w e  
will see  t h a t  the hiqh c locks  are a /m]H1gh <->, ,fgH; t 

pred ic t ed  t o  run f a s t  with 

- -  Lrw 

L o w  
- 7 - 7  

r e spec t  t o  t h e  Low c locks .  one 
can deduce t h i s  r e s u l t  e a s i l y  by 1 1 1  
u s i n g  t h e  ideas of t he  k -ca lcu l l l s  ' Ar lrrh ' G r a v l l ~ b '  
which we introduced e a r l i e r .  

F ig t i re  15 
I t  is  not  t r u e  t h a t  you 

cannot cons ider  a c c e l e r a t e d  Compflrlson of--~!gcks 
I"  " ~ c l a b l  

motions i n  special r e l a t i v i t y .  
J,et us consider  them. The l e f t  
o f  Fiqure  16 shows the  curved " ' "" * I q '  + 1 LOW High 

world l ines  i n  an i n e r t i a l  
system Minkowski diagram of t he  / / / / 

I l o w  and hiqh clocks o f  Figure 15 / / ,I k T  ~1 , / A  
i n  t h e  "Aclab" . T,et us  send 
l i g h t  pulses from t h e  l o w  clock 

- -- 
t o  t h e  high clock, a s  shown on x 

the r i g h t  of F igure  16.  T h e r ~  
w i l l  be a s t r e t c h i n g  f a c t o r  kT F i g u r e  1 6  
j u s t  as we have d iscussed  
e a r l i e r ,  because there is some velocity of the  high clock a t  t h e  t i m e  of 
r ecep t ion .  m e n  though t h e  hiqh clock s t a r t e d  o f f  with zero v e l o c i t y  

1 with  r e s p e c t  t o  t h e  i n e r t i a l  system, the a c c e l e r a t i o n  produces some 
I v e l o c i t y  accordj-ng to v = a t .  I f  we s u b s t i t u t e  f o r  v  i n  t h e  equat ion ,  

and make a f e w  manipulat ions,  we find f o r  k 

B u t  t = h/c where h i s  the  s epa ra t ion  of t he  clocks. m e r e f o r e ,  

k = ( 1 -+ 2atl/c 1 "/z 

B U ~  by t h e  P r inc ip l e  of Equivalence, t he  a c c e l e r a t i o n  of qravity g is 
equ iva l en t  t o  a, so we s u b s t i t u t e  q for a  and qet 

1 
k = ( 1 + 2qh/c 1 12 

Then we remember t h a t  , according t o  Newtonian physics ,  the 
g r a v i t a t i o n a l  p o t e n t i a l  d i f f e rence  i s  gh, so we have  



I n  t h e  "Gravlah". as shown i n  Ficrure 17. the 
L 

worldlines of the l o w  and t h e  h i g h  c l o c k s  w i l l  be Low Hiqh 
A 

s t r a i g h t ,  s i n c e  they a r e  n o t  moving. However, i f  t 
we send Ligh t  p u l s e s  from t h e  l o w  c lock  t o  t h e  
high c l o c k ,  w e  would s t i l l  g e t  a s t r e t c h i n g  
f a c t o r  g iven by t h e  above e q u a t i o n  because  o f  t h e  
P r i n c i p l e  of Equiva lence .  This s t r a i y h t e n e d  
space- t ime diagram e x h i b i t s  t h e  c u r v a t u r e  of T 
space-t ime, i n  t h i s  case ,  t h e  c u r v a t u r e  of t ime,  
t h a t  is a t  the h e a r t  of E i n s t e i n ' s  t h e o r y  o f  
g r a v i t y ,  Genera l  R e l a t i v i t y .  L e t ' s  look a l i t t l e  
more a t  t h a t .  

"Gravlob" 

F i g u r e  1 7  

To compare a  low c lock  wi th  a h igh  c lock  i n  
a g r a v i t a t i o n a l  f i e l d ,  w e  can use t h e  same 
E i n s t e i n  p r e s c r i p t i o n  w e  d i s c u s s e d  e a r l i e r :  send 
o u t  a l i g h t  p u l s e ,  g e t  it r e f l e c t e d  back, and  
i d e n t i f y  t h e  mid-point  between send ing  and 
r e c e i v i n g  w i t h  t h e  t i m e  of r e f l e c t i o n ,  a s  shown 
i n  F igure  18. These two e v e n t s  are s imul taneous  
f o r  t h e  low observer. A l i t t l e  h i t  l a t e r ,  t h e  
low o b s e r v e r  could do t h e  same t h i n g  and i d e n t i f y  
t h e  mid-point  time w i t h  t h e  r e f l e c t i o n  t i m e  as  
b e i n g  s imul taneous .  B u t  what we've just seen is  
that t h e  elapsed t ime  f o r  t h e  h i g h  c l o c k ,  A ~ , i s  
going t o  be d i f f e r e n t  from t h e  e l a p s e d  t i m e  fo r  
t h e  low c lock ,  A t ,  d e f i n e d  t h i s  way: A T  f A t  . 

F i g u r e  18 
Now, how to i n c o r p o r a t e  t h i s  g r a v i t a t i o n a l  

e f f e c t  i n t o  t h e  m e t r i c  s t r u c t u r e  t h a t  Minkowski had proposed,  t h e  
i n v a r ' a n t  i t e r v  17 E i n s t e i n ' s  i d e a  w a s  t o  r e t a i n  t h e  i d e n t i f i c a t i o n  o f  3 4 4 
(AS) c ( A T )  , A T  b e i n g  t h e  p roper  t i m e  i n t e r v a l ,  and t o  i n s e r t  a  

m e t r i c  c o e f f i c i e n t  i n  t h e  i n v a r i a n t  i n t e r v a l  e x p r e s s i o n  i n  o r d e r  t o  m k e  
t h i n g s  come o u t  t h e  way we have j u s t  c a l c u l a t e d  F o r  a s t a t i c  
s i t u a t i o n .  So h e r e  i s  t h e  p resence  of a m e t r i c  c o e f f i c i e n t  i n  t h i s  
i n v a r i a n t  i n t e r v a l  which i s  a m a n i f e s t a t i o n  of t i m e  c u r v a t u r e .  

2 2 2 
2$/c c (At) - 

m e t r i c  
c o e f f i c i e n t  

For t h e  s t a t i o n a r y  high clock, w e  have t h e n  t h a t  

AT - ( 1  + 2 + / e 2 )  l h a t  

we  can get t h e  speed of l i g h t  by n o t y g  t h a t  f o r  l i g h t  p u l s e s ,  t h e  two 
e v e n t s  lying along a light line, (As) is going t o  be 0, so i f  you p u t  
t h i s  e q u a l  t o  0, w e  can s o l v e  f o r  Ax/At, t h e  c o o r d i n a t e  speed of l i g h t ,  I 



and we get 

This shows t h a t  t h e  h ighe r  you go, the f a s t e r  the  l i g h t  must move, as we 
had concluded a l r e a d y .  We can now ask what happens t o  a  moving c l o c k .  
L e t ' s  bring i n  three dimensions, and inc lude  Ax, Ay and Az i n  the  
me t r i c ,  

2 2 
The sum of t h e  squares  of these  i s  j u s t  v ( A t )  . Making that 
s u b s t i t u t i o n ,  and c a r r y i n g  out a few l i n e s  of a lgeh ra ,  

2 2 2 ( h ~ ) ~  = ( 1  + 2 + / c 2  - v / c  ( A t )  

w e  get t h a t  i n  t h i s  g r a v i t a t i o n a l  case  t he  r e l a t i o n s h i p  between t h e  
proper t i m e  i n t e r v a l  and t h e  coord ina te  t i m e  i n t e rva l .  is  given by 

proper  
time 
i n t e r v a l  

coord ina te  
time 
i n t e r v a l  

2 2 2 
We can expand this when $/c and  v / c  are  small., which i s  c e r t a i n l y  
the  case on t h e  su r f ace  of t h e  e a r t h ,  and  we g e t  

One can synchronize clocks t o  t h e  coordinate t ime (which  we are 
taking as t h e  t ime kep t  by c locks  on the su r f ace  OF the  earth) by u s i n g  
t h e  laser pu l se  technique i l l u s t r a t e d  i n  Figure 18. I h e  l i g h t  line i s  
drawn slightly curved i n  to i l l u s t r a t e  the speed of l i q h t  
changing wi th  a l t i t u d e .  To make t h e  high clock run  a t  t h e  same rate as 
the low c lock ,  one must p h y s i c a l l y  a d j u s t  it (See t'le l a t e r  dist :ussion 
on t h e  GPS) . 

/- ...- ..-- As : 78 9 km 
The above equat ion i s  the bas i c  one needed / .....- -----. 

i n  o rde r  t o  understand these  e f f e c t s  of General i-rBLt-:n 
Relativity on proper  t i m e .  I ' d  l i k e  to give a n  '\>,,. 

analogy t o  t h e  curved su r f ace  of t h e  e a r t h  i n  
Figure 19. Here we have a coordinate increment ' A s  = I I  7 km 

of longi tude ,  c a l l  it A i r ,  with An be ing  one 
degree. You know t h a t  a t  the equator  t h e  actual F i g u r e  113 
proper  d i s t ance  on the  e a r t h  is  about 112 
k i lometers ,  whereas, i f  we qo t o  a l a t i t u d e  of 4 . 5 O  and cons ider  the same 
long i tude  i n t e r v a l ,  i t ' s  o n l y  about 79 k i lometers .  'Ihere i s  a proper 



dis tance  i n t e r v a l  A s  which is  related t o  the coordinate distance 
interval A a  by t h e  following equation 

A s  = R cos R Aa 
Proper Coord ina te  
Distance Distance 
Interval I n t e r v a l  

and there  is  a coef f i c ien t ,  called the  metric coef f i c ien t ,  R cos f 3 ,  
where fi is  the l a t i t u d e  and  R i s  t h e  radius  of the  ear th.  This is  a n  
excel lent  analogy t o  the  s i t ua t i on  in curved space-time. mere, w e  
have, when the  clock is  n o t  moving 

o r  AS = qO0 "2 . A t  

where goo i s  t he2  name given by r e l a t i v i s t s  t o  the metric 
coef f i c ien t  ( 1  + 2$/c ) . ?he proper time i n t e rva l  A i s  r e l a t ed  t:o 
the  coordinate time i n t e r v a l  A t  in t h i s  way for s ta t ionary  clocks: 

One can often establish on two-dimensional 
curved surfaces a metric formula. I n  the case x 
of the  sphere when we consider both l a t i t ude  and 
longitude we get  

2 2 2 2 2 
( A )  = R cos 8 ( A , )  + R ( A P  ) 

For a different choice of coordinates on a two- 
dimensional surface,  as shown i n  Figure 2 0 ,  
there can be cross-product terms 

2 
( A S ) ?  = g l 1  (Axl 1 + q I 2 A x 1  A x 2  

F i g u r e  20 ,. 

?he great  mathematician Gauss and his successors Riemann and Levi-Civita 
and many other differential. geometers, have extended t h i s  t o  any number 
of dimensions and have wri t ten  the  proper i n t e rva l  of distance as a 
quadrat ic  f o r m  with metric coef f i c ien t s ,  which are always cal led  g now, 
because of their appl ica t ion t o  gravity by Einstein i n  his curved space- 
time . 



TJnfortunately, w e  cannot go into the mthe ina t i c s  of d i f f e r e n t i a l  
geometry f o r  l a c k  of t ime .  It i s  h i g h l y  i n t e r e s t i n g  and e n l i g h t e n i n g  
a n d  very powerful f o r  c a l c u l a t i o n s ,  but i n  many ways it has obscured the 
phys ics  of General R e l a t i v i t y .  

E i n s t e i n  got t h  s e  i deas  ahnut inc lud inq  met r ic  c o e f f i c i e n t s  i n  t h e  4 
expression for ( A s )  t o  descxihe grav i ty  around about 1911/1912. During 
t h e  y e a r s  1912-1914, h e  worked w i t h  h i s  long-time f r i e n d ,  the 
mathematician Marcel Grossmann, t o  develop the General 'Iheory o f  
R e l a t i v i t y .  They wanted t o  allow curvature of space as  we l l  a s  
curvature of t i m e ,  a n d  they proposed f i e l d  equat ions t o  describe how 
ma t t e r  w i l l  curve space a n d  t i m e .  That is, how the met r i c  coefficients 
w i l l  be determined by the d i s t r i b u t i o n  of mat t e r .  Matter curves space- 
time. E i n s t e i n  proposed that objects would move in t h i s  curved space- 
time along geotlesics: t h e  s h o r t e s t  path o r  the ext remal  pa th .  A 
geodesic  be tween  t w o  poiqts on t h e  sur face  of the  c a r t h  is  the s h o r t e s t  
path -- t h e  arc of a g r e a t  c i r c l e .  In t h e  case of curved space-time, i f  
you imaqine a  clock attached t o  a p a r t i c l e  which is  moving, t h e  mo t ion  
will be such t h a t  the e lapsed  proper time w i l l  be a m a x i m u m .  Ber t rand  
Russell wittily called thi . ;  the " P r i n c i p l e  of C o s m i c  Iziziness".  

mere i s  t h e  p r e s c r i p t i o n :  f as t  - 
"Curved space-time t e l l s  o b j e c t s  
how t o  move; mat te r  t e l l s  space- 
t ime how t o  curve." This  i s  t h e  s",-, 

0 0 0 0 Q 0  
way Professor John Wheeler l i k e s  
t o  summarize General Rela- 
t i v i t y .  ?here i s  no more -- G M  
Newtonian f o r c e .  Objec ts  move r c  2 

under the i n f luence  o f  g r a v i t y  
because of the way c locks  
behave. h clock w i l l  run f a s t e r  

@ E a r t h  

the higher it is, and it w i l l  run 
slower t h e  f a s t e r  it moves. The 
primary curva ture  for slow speeds F i g u r e  2 1  
and weak gravitational f i e l d s  i s  t h e  curva ture  of t i m e ,  no t  t h e  
c u r v a t u r e  of space, a s  you read i n  so many nf the popular books. How 
c a n  you r ep re sen t  t h i s  curvature o f  time? W e  c an  do it in terms of t h e  
diagram i n  Fiqure 2 1 .  lmaqine  t h e  sun on the l e f t ,  and a l o t  t h e  
g r a v i t a t i o n a l  potential Q of the s u  as  a func t ion  of t h e  d i s t a n c e  r 9 .  f r o m  i t s  cen te r  (or ,  better, p l o t  $/c s l n c e  t h i s  combination occurs  i n  
the r e l a t i o n  between proper t ime and  coord ina te  t i m e ) .  



where G = Newtonian G r a v i t a t i o n a l  Cons tan t  
MI = Mass of t h e  Sun 
R; = Radius of t h e  sun  

This p l o t  is o f t e n  c a l l e d  
t h e  " p o t e n t i a l  w e l l "  o f  t h e  
sun.  

2 
Its "depth" is 

M / ~ - c  = 2 x 1 c 6  . .me much 
srnayler p o t e n t i a l  w e l l  o f  t h e  
e a r t h  is  shown superimposed ( i n  
e x a g g e r a t e d  form) on t h e  curve 
for  t h e  *sun. Its- gepth i s  

G M . / R c  7 x 1 0  (Ma - - 
mass of t h e  earth; Re = r a d i u s  of 
the e a r t h ) .  With r e s p e c t  t o  a 
c l o c k  a t  a g r e a t  d i s t a n c e  ( a t  t h e  
"top" of t h e  p o t e n t i a l  w e l l ) ,  a 
c l o c k  w i l l  run  slower as it is 
p l a c e d  deeper  i n  t h e  p o t e n t i a l  
w e l l .  

'Xlo dramat ize  t h i s  e f f e c t ,  
consider Figure  2 2  which i s  a 
drawing made by Herblock, t h e  
g r e a t  c a r t o o n i s t  of t h e  
Washington P o s t ,  a t  t h e  t ime  of 
E i n s t e i n ' s  d e a t h  i n  1955. 
Imagine t h a t  an observer a t  a 
g r e a t  d i s t a n c e  from t h e  sun i s  
observing e v e n t s  on  earth. One 
hundred years on earth ( f o r  
example, t h e  t i m e  between 
E i n s t e i n ' s  b i r t h  and  h i s  
c e n t e n n i a l  c e l e b r a t i o n  on March 
14, 1979) would appear t o  t h i s  
observer as 100 years p lus  41 
seconds:  29  seconds from the 
a s c e n t  from t h e  ear th  up the  
p o t e n t i a l  w e l l  of the sun; two 
seconds from the  potential w e l l  
of the e ~ t h ; ~  and 15 seconds  from 
t h e  Y /2c e f f e c t  of t h e  
e a r t h  ' s v e l o c i t y  around t h e  sun. 

Figure 22 

F i g u r e  2 3  

M~srier, Thorrre, 

Wheeler ) 



I Wheeler likes t o  demonstrate the  motion alonq geodesics  i n  space- 

cover of the grea t  book, Grav i t a t i on ,  by Misner, lhorne and Wheeler. 
Suppose you imaqine a n t s  t h a t  try t o  move a s  s t r a i g h t  as  t h e y  can  
l o c a l l y  ( t h i s  is one way t o  d e f i n e  a qendesic)  . Since t h e  su r f ace  of 
t h e  apple  is  curved, they  t e n d  t o  move i n  curved pa ths ,  and t h i s  i s  
analogous t o  t h e  motion of o b j e c t s  i n  curved space-time. Local ly ,  they 
try t o  gr, a s  straight as  p o s s i b l e  an4 they end up q o i n q  i n  curves ,  which 
mani fes t s  i t s e l f  i n  an a c c e l e r a t i o n ,  t h e  accelera t lnn  of g r a v i t y .  So 
h i s  P r i n c i p l e  o f  Equivalence gave t h e  c l u e  t o  Eins te in :  g r a v i t y  i s  t o  be 
desc r ibed  by the met r i c  c o e f f i c i e n t s  i n  curved space-time, i nc lud ing  not  
only t h e  goo coefficient, hut  all t h e  o t h e r  c o e f f i c i e n t s  t h a t  could come 
i n  from the  d i f f e r e n t  products  o f  A t ,  Ax, Ay, and A x .  . 

A - - 
'12 - '21 ; '13 - '31 ; ' 2 3  - '32 

s o  t h a t  vou end up w i t h  only t e n  met r ic  c o e f f i c i e n t s  which can he 

I i n e r t i a l  coord ina tes  ( i n e r t i a l  o b s e r v e r s ) ,  hut f o r  an  i n e r t i a l  observer 
( r e a l i z a b l e  l o c a l l y  by a f r e e l y  f a l l i n q  l a b o r a t o r y ) ,  t h i s  a r r ay  of 
me t r i c  c o e f f i c i e n t s  reduces t o  a  simple form 

%is regresents the Minkowski metric that w e  have seen earlier: 



When you make a change of c o o r d i n a t e s ,  the met ic c o e f f i c i e n t s  are go ing  3 
t o  have t o  change a l s o  i n  o r d e r  t o  keep A s  i n v a r i a n t .  Ihe m e t r i c  
c o e f f i c i e n t s  p l a y  t h e  r o l e  of g e n e r a l i z e d  g r a v i t a t i o n a l  p o t e n t i a l s .  I 
w i s h  t h e r e  w e r e  more time t o  e l a b o r a t e  on t h e s e  t h i n q s .  

I 

SUMMARY OF GENERAL RELATIVITY 

E i n s t e i n  wro te  the q u a d r a t i c  form t h a t  i m p l i e s  summation on 
r e p e a t e d  i n d i c e s :  p and V r u n  f r o m  0 t o  3, 

(AS 1 * - 
- 9;lv 

Ax Ax . 
P v 

i n v a r i a n t  m e t r i c  
i n t e r v a l  c o e f f i c i e n t s  

Ihe  c o e f f i c i e n t s  are t o  be  o b t a i n e d  by s o l v i n g  t h e  famous f i e l d  
e q u a t i o n s  which ar&%own h e r e  i n  symbolic form. 

R - - ~ T C ,  - '/2 Rgpv T 
P V  

C 
4 PV 

C o n t r a c t e d  Curva tu re  S k r e s s  
Riemann S c a l a r  Energy 
Curva tu re  9knsor 
Tensor 

These are t e n  second o r d e r  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  n7ey a r e  
n o n - l i n e a r  i n  that they i n v o l v e  p r o d u c t s  o f  t h e  f i r s t  d e r i v a t i v e s  of t h e  
m e t r i c  c o e f f i c i e n t s .  The s o u r c e  term on t h e  r ight-hand side T , is  

I 

lJ v the g e n e r a l  s t r e s s  energy  t e n s o r  o f  matter; it i n c l u d e s  t h e  e f f e c t s  o f  
m a t t e r ,  energy,  and p r e s s u r e ,  all of which produce g r a v i t a t i o n a l  
f i e l d s .  On t h e  l e f t - h a n d  side are v a r i o u s  c u r v a t u r e s  Prom d i f f e r e n t i a l  
geometry i n v o l v i n g  f i r s t  and second o r d e r  p a r t i a l  d e r i v a t i v e s  w i t h  
r e s p e c t  t o  t i m e  and space of the m e t r i c  c o e f f i c i e n t s  g 

Y V  ' 
R is  t h e  

c o n t r a c t e d  Riemann Curvature Wnsor  and R i s  the Curva ture  ~ c 2 l ) a r .  I n  
1917, Karl Schwarzschi ld  s o l v e d  t h e s e  e q u a t i o n s  and go t  the famous 
SchwarzschiZd metric, which I d i s p l a y  h e r e .  

2 2GM 2 2  ( A  r? 2 2 
( A S )  = ( 1  - - 1 c ( A t )  - - r2 cos  B ( A ~ ) ~  - r ( A B )  

2 

II r c  2 2 
( 1  - 2 G ~ / r c  1 

2 
c (AT) 

2 
Curva ture  Curva tu re  

f o r  moving o f o f 
o b j e c t s  Time Space 

%is i s  the metric t h a t  is  t o  exist o u t s i d e  of a2 i s o  ated s p h e r i c a l  3 
body of mss M. The c o e f f i c i e n t  goo of t h e  c ( A t )  t e r m  i n v o l v e s  
-GM/r, which is  the  Newtonian p o t e n t i a l  4 . It d e s c r i b e s  the curvature 
of t i m e  as w e  have s e e n  earlier* There's a l s o  a similar e x p r e s s i o n  i n  
t h e  denominator o f  t h e  ( A r )  term, when one u s e s  s p h e r i c a l  
coordinates as here. This  d e s c r i b e s  the c u r v a t u r e  of space. B u t ,  for  

706 



ord ina ry  motion ( t h a t  is ,  i n  weak g r a v i t a t i o n a l  f i e l d s ,  l i k e  on t h e  --- 
e a r t h ,  and f o r  v e l o c i t i e s  much l e s s  than t h e  speed of l i g h t ) ,  you c a n  
n e g l e c t  t h e  curva ture  o f  space.  A1 1 o f  Newtonian physics  f o l l o w s  from 
t he  cu rva tu re  of time a l o n e .  

I t  is t h e  Schwarzschild met r ic  
t h a t  leads t o  the famous concept n f  

t h e  black h o l e .  This is  a phrase -- - 
coined by John Wheeler,  S p p o s e  you 
ask , ca? the coefficient of 
the c ( A t )  term, t h e  g 

0 0 
c o e f f i c i e n t ,  go t o  01  Well, it can:  

2 m  
- I - - -  - 
- - 0 

r c 
2 

Figure 2 4  

One calls t h i s  va lue  of r t h e  Schwarzschild b d l u s  and o f t e n  denotes i t  

by ' s *  You can c a l c u l a t e  its value f o r  varjous masses. In t h e  case oF 
t h e  e a r t h ,  i t ' s  ahout nine mi l l ime te r s .  I n  the case of t h e  sun, i t ' s  
three  k i lome te r s .  Now suppose you could  compress all o f  the m a s s  oF t h e  
sun i n t o  a sphere with a radius of less t h a n  three ki lometers?  Then 
you would have a  very r ; i . n g ~ l a r  su r f ace  outsj.de the miss,  which i s  shown 
as a dashed l i n e  i n  Figure 2 4 .  The su r f ace ,  o f t e n  c a l l e d  the evcnt 
hor izon ,  has  remarkable p r o p e r t i e s ,  because t h e  c o e f f i c i e n t  qnn vanishes  
t h e r e .  I f  you imagine watching a clock moving i n  towards--the event  
horizon from a great  d i s t ance ,  i t s  t ime a n d  motion would slaw down and 
you would never see it get  t h e r e .  For this reason, t h e  Russians c a l l  an 
object of t h i s  sor t  a frozen s t a r ,  j u s t  hecause of the prope r ty  t h a t  
ma t t e r  would fall i n  and seem t o  never get  beyond the event  hor izon .  
Ynti cannot get any  information out f r o m  i n s i d e  t h i s  event hor i zon .  
However, i f  you are r i d i n g  i n  with s o w  of the  f a l l i n q  mattel-, and 
recording t h i n g s  i n  vour  p rope r  t i m e ,  it takes  a f i n i t e  p roper  t ime to 
get in and throuqh the event  ho r i zon ,  If t he re  ic; a supernova e x p l o s ~ o n  
and subsequent co l l apse  of the c e n t r a l  ma te r i a l  t o  form a black ho le ,  
t h i s  can happen i n  a few mi l l i s econds .  Such col l a ~ ~ s e s  are, perhaps,  
p o t e n t  sources of q r a v i t y  waves, about which w e  w i l l  hear i n  t h e  n e x t  
talk. 

I want t o  c o r r e c t  a widespread inisconception about black holes:  
that they are a l l  very,  very dense.  This i s  c e r t a i n l y  t h e  case f o r  t h e  
examples of black holes w i t 1 1  a solar mss or an e a r t h  mass as discussed 
above. Note, however, that the Schwarzschild r a d i u s  rs i s  p r o p o r t i o n a l  

3 to the mss M I  and t h a t  t h e  d e n s i t y  v a r i e s  a s  ~ / r  . Therefore,  t h e  
2 s d e n s i t y  depends on mass as 1 / M  . For a b l a c k  hole wlth very l a r g e  mass, 

t h e  d e n s i t y  can be very small. *re 25 shows t h e  galaxy M87 i n  t h e  
Virgo c l u s t e r .  'IhLs i s  a weak exposure s o  that you c a n  s e e  t h i s  b r i g h t  



j e t  coming out  of the  center  unobscured by 
outer  p a r t s  of the  galaxy. ?here is  some 
evidence, fo r  example the  high v e l o c i t i e s  
of s t a r s  near the  center  of t h i s  galaxy, 
t h a t  suggests  t h a t  the re  is  a black hole of 
severa l  b i l l i o n s  of s o l a r  masses present  
there. The j e t  is probably associa ted  with 
the  r o t a t i o n  of t h a t  black hole; matter 
being converted i n t o  energy as it f a l l s  
i n t o  the  black hole,  and somehow prope l l ing  
the  j e t  along the  axes of r o t a t i o n .  mere 
are many jets of  t h i s  s o r t  i n  ga laxies .  
There may be a black hole i n  t h e  center  of 
our own galaxy. There's some evidence for  
it, but no time t o  d iscuss  it here .  Figure 25  

EXPERIMENTAL MEASUREMISNTS OF RELATIVI STXC CLOCK EFFECTS 

Let me now t a l k  some about  experiments very quickly. We have done 
experiments with a i r c r a f t  and lasers t o  i l l u s t r a t e ,  measure and 
demonstrate these  e f f e c t s .  My chief col labora tor  was Len Cut ler  who was 
the  designer of the  Hewlett-Packard 5061 Cesium atomic beam standards 
which w e  used. ~ o b  ~ e i s s e ~  and Ralph williams8 d id  t h e i r  theses  as part  
of these  experiments. There were many other  p a r t i c i p a n t s  a t  t h e  
Universi ty of Maryland and the  Naval Observatory. D r .  Gernot Winkler, 
Director  of t he  Time Services Division, very kindly l e n t  t h e  clocks and 
gave much, much support t o  these  a c t i v i t i e s .  

We were ab le  t o  f l y  clocks i n  an a i rp lane ,  s u i t a b l y  packaged s o  
t h a t  t h e y  d i d n ' t  s u f f e r  f r o m  environmental degradation of t h e i r  
performance. Figure 26 shows a schematic diagram of t h e  f l i g h t s .  
We could send light pulses  up and get them r e f l e c t e d  back from a lunar- 
type corner r e f l e c t o r  on t h e  plane, a l s o  r e g i s t e r i n g  the  t i m e  of t h e i r  
a r r i v a l  with the  a i rp lane  clocks i n  j u s t  the  way Eins te in  prescribed We 
tracked the  a i r  craft with radar  beams i n  order  t o  have an independent 
knowledge of the  pos i t ion  and veloci ty  from which t o  ca lcu la te  the  
proper time d i f fe rences .  W e  used minicomputers and event t imers  both on 
the  ground and on the  plane.  There's no time t o  go i n t o  d e t a i l s ;  these  

1 have been discussed i n  o the r  p laces  . The plane would f l y  f o r  about 15 
hours over the  Chesapeake Ray from the  Patuxent Naval A i r  Test Center i n  
a race t rack p a t t e r n ,  taking about 2 0  minutes t o  go around a path shown 

R .  A .  Reisse, "The Ef fec t s  of Gravi ta t ional  Po ten t i a l  on Atomic 
Clocks as Observed w i t h  a Laser Pulse Time Transfer System," Universi ty 
of Maryland Ph.D. d i s s e r t a t i o n  (May, 1976).  

R. E. Williams, "A Direct: Measurement of t h e  R e l a t i v i s t i c  Effec ts  of 
Grav i t a t iona l  Po ten t i a l  on the Rates of Atomic Clocks Flown i n  an 
Aircraft," University of Maryland Ph.D. d i s s e r t a t i o n  (May, 1976) .  



in Figure 27. We wwuld accumulate, during one of these f l i g h t s ,  a 
tvaical  t i m e  difference o f  ahout 50 nanoseconds .  %ese measurements 
were i n  good agreement with  the proper t i m e  integral. The t i m e  
d i f f e r e n c e  between the airborne and ground c l o c k s  would be g i v e n  by 
integrals of t h i s  sort. 
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W e  a l lowed  f o r  h i g h e r  t e rms  i n  
t h e  e a r t h  ' s g r a v i t a t i o n a l  
p o t e n t i a l  due t o  i t s  o b l a t e  
shape, and f o r  t h e  r o t a t i o n a l  
e f f e c t s  o f  t h e  ea r th .  we 
e v a l u a t e d  the p r o p e r  t i m e  
i n t e g r a l  i n  a reference frame 
c e n t e r e d  on t h e  e a r t h  which i s  
n o n - r o t a t i n g  w i t h  r e s p e c t  t o  
d i s t a n t  m a t t e r ,  a s  shown i n  C H E S A P E A K E  

F igure  2 8 .  

The c l o c k s  were modi f i ed  i n  
o r d e r  t o  g i v e  t h e  performance 
needed.  Fol lowing s u g g e s t i o n s  by 
Len C u t l e r  and o t h e r s  at H e w l e t t -  
Packard,  we i n c r e a s e d  t h e  beam 
c u r r e n t  by a f a c t o r  of 2 ,  we THE O D O L I  T E S T A T I O N  

added an  i n t e g r a t i n g  loop  i n  t h e  
c r y s t a l  c o n t r o l ,  and t h e r e  was a SCALE 

p r o p r i e t a r y  m o d i f i c a t i o n  o f  t h e  
beam tuhe (now s t a n d a r d  on a l l  F i g u r e  2 7  
h i g h  performance tubes). A l l  i n  
all, w e  c o u l d  a c h i e v e  s t a b i l i t i e s  A 
o v e r  t h e  15 hours  a t  a coup le  of 

w (-3 V = w r  C O S B  
p a r t s  i n  l 0 I 4  w i t h  s t a n d a r d  
commercial c l o c k s ,  a s  shown in 
Figure  2 9 .  We p a i d  much 
a t t e n t i o n  t o  p r o v i d i n g  a s t a b l e  
environment f o r  t h e  c l o c k s .  Let 
u s  look a t  some pictures t o  show 
you t h e  equipment and g ive  you 
some f e e l i n g  f o r  t h e  exper iment .  

F igure  30 i s  t h e  p l a n e  which 
we used .  F igure  31 shows it on 
t h e  ground; the  c l o c k s  were i n  
t h e  t ra i ler ,  and t h e  l a s e r  F i g u r e  2 8  
equipment was i n  t h e  bus. Figure 
32 is t h e  d e t e c t o r  on t h e  p l a n e  - 
heh ind  one of t h e  o b s e r v a t i o n  windows. F igure  33 shows t h e  c o r n e r  
r e f l e c t o r  o u t s i d e  t h e  o b s e r v a t i o n  window. Figure  34 i s  t h e  beam 
d i r e c t i n g  o p t i c s .  F igure  35 shows t h e  l a s e r ,  below which is t h e  7.5 
i n c h  t e l e s c o p e  which receives t h e  r e f l e c t e d  l a s e r  p u l s e s .  Roth t h e  
d e t e c t o r  and a c l o s e d  c i r c u i t  TV camera f o r  qu id inq  a r e  coupled t o  it 
w i t h  a beam s p l i t t e r .  F igure  36 shows Len C u t l e r  a d j u s t i n g  some o f  the 
six Cesium beam c l o c k s .  F igure  37 i s  t h e  c lock  hox t h a t  p r o t e c t e d  them 
from env i ronmenta l  changes .  It c o n t a i n e d  magnetic shields, v i b r a t i o n  
i s o l a t o r s  w i t h  n e a r  c r i t i c a l  damping a t  a resonan t  f requency of s e v e r a l  
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I Hertz, and cons tan t  p re s su re  and k ~ r n b e r  of  p o  r l t s  o t  snrnplp 

cons tan t  temperature controls. 4 * 7  2 I P -  51 L~ 12 5 
. ~ r  t n r n ( e  

A i r  was c i r c u l a t e d  through t h e  4 2' H / o  2 %  H*/O 26% 

boxes to g e t  t h e  h e a t  otlt and t o  E - 
keep t h e  temperature cons tan t ,  as C r o r  P 8 i r e  w h t e  f r e q u e n c y  n o i s e  i 

.. - 
shown i n  Fiqure 3 8 .  Figure 3 3  C j - 

\ (..;.I =,/g 
shows the  l i d  which supported \ 

and vol tage  p re s su re  
4 

r e g u l a t o r s .  Figure 40 shows t h e  
clock box mounted i n  the P3C - 
a i r p l a n e .  Figure 41 i s  t h e  - - 
e l e c t r o n i c  equipment t o  measure (y-!cm5L 

- 

and  record t h e  r e l a t i v e  
1 
- 

performance of c locks  on board - 
and t o  record t h e  epoch of t he  - 
a r r i v a l  of t he  l aser  p u l s e ,  On 
t h e  r i g h t  of Figure 41 i s  a - 
t r a v e l l i n g  clock, whose 
environment was not c o n t r o l l e d .  

- 
- 

?he kinds of da ta  t h a t  one \ \ 

could get are shown i n  F iqure  42 i Systenl r w n u t i o n  x, 
5 t 

f o r  a f l i g h t  on November 2 2 ,  
'. 

1 1 1-- --A. . -1 ..-. 

1975. W e  f l e w  f o r  f i v e  hours a t  S e r o n d s  
2040 1080 8 E O  64?0  37640 65280 130560 

25,000 f e e t ,  and f o r  another  f i v e  
hours a t  30,000 feet t a  burn off 
f u e l ,  concluding with another  Figure 29  
five hours a t  35,000 f e e t .  So 
t h e r e  were s t e p s  i n  t h e  p o t e n t i a l  
d i f f e r e n c e  . The v e r t i c a l  s c a l e  i s  p a r t s  i n  10 j2. mere were changes of 
v e l o c i t y  due t o  wind a s  t h e  a i r c r a f t  c i r c l e d ,  shown i n  the lower part of 
Figure 42 (the v2/c2 effect). 'Ihe i n t e g r a l  of t hese  curves is  shown i n  
Fiqure 43.  The p o t e n t i a l  effect in tegra tes  out t o  about  53 nanoseconds, 
the v e l o c i t y  effect t o  about -6 nanoseconds, with t h e  ne t  effect being 
about 47 nanoseconds. The e r r o r  har  po in t s  a r e  t h e  l a s e r  pu lse  t i m e  
comparisons.  ?he a c t u a l  da ta  before  f l i g h t  and a f t e r  flight can be seen 
i n  Figure 44 with t h e  d i r e c t  side-by-side clock comparison r ep resen ted  
by t h e  s o l i d  line, the l a s e r  comparison shown again by e r r o r  bar 
p o i n t s .  The agreement between the p red ic t ion  and t h e  measurements i s  
q u i t e  good. The r e l a t i v e  r a t e  of the a i rborne  and ground clocks 
ensembles is represented  by t h e  s lope and i s  seen t o  be t h e  same both  
before and a f t e r  f l i g h t .  ?here was a s imi l a r  e f f e c t  f o r  each of the 
i nd iv idua l  clocks. Figure 45  i l l u s t r a t e s  t h e  e f f e c t s  of t h e  steps i n  
a l t i t u d e .  They proeuced changes i n  r e l a t i v e  clock rates which were 
measured by the l a s e r  pu l se  t i m e  comparison. The technique can s e r v e  as 
a crude a l t ime te r1  Figure 46 shows the  t i m e  of an on-board clock with 
respect t o  t h e  average of a l l  on-board clocks. You can't even t e l l  
where t h e  f l i g h t  occurred1 I f  t h a t  same clock is  compared w i t h  t h e  
ground ensemble as shown i n  Fiqure 47, t h e r e  is a  step of some 47 
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nanoseconds o r  so, a s  expected. Five 
s e p a r a t e  15-hour f l i g h t s  of t h i s  t ype  were $pole 

c a r r i e d  out ,  each y i e l d i n g  s i m i l a r  r e s u l t s .  /--', _----  
W e  have done o t h e r  a i r c r a f t  c lock 

experiments on a global scale. Y o u  w i l l  
r eca l l  E i n s t e i n ' s  "error' ' t h a t  we r e f e r r e d  
t o  e a r l i e r ,  t he  equator  t o  t he  pole clock 

C_3 +eq 
+pole ' +eq 

comparison. The su r f ace  ve loc i ty ,  i f  w e  
cons ider  on ly  t h a t ,  gives a p r e d i c t i o n  of 
102 nanoseconds a day f o r  t he  r e l a t i v e  
clock rates. R u t  t h i s  is wrong, because Figure 48 
you m u s t  a l s o  cons ider  the  g r a v i t a t i o n a l  
p o t e n t i a l  d i f f e r ence .  I n  going from the  equator t o  t h e  pole on a n  
o b l a t e  e a r t h  there i s  a change i n  p o t e n t i a l ,  as shown i n  Figure 48. ?he 
e a r t h  i s  an o b l a t e  y h e r o i d  and t h e  mean ocean su r face  i s  an 
e q u i p o t e n t i a l  o f  $ - v / 2 ,  the  so-cal led geopo ten t i a l .  You remember 
that's exac t ly  what comes i n t o  t h e  r e l a t i o n  between proper time and 
coord ina te  time: 

4 - vA/2 i s  cons tan t  a long  t h e  mean ocean su r f ace  on t h e  oblate 
earth. So the proper time i s  going t o  2x2 cons tan t  a long  t h e  mean ocean 

1 surface. Thus, one would expect  a time d i f f e r e n c e  t o  he produced only 

I by f l i g h t  condi t ions ,  t he  a l t i t u d e  above t h e  ocean su r f ace  and t h e  
v e l o c i t y  c o n t r i b u t i n g  t o  the proper time i n t e g r a l ,  a s  we have 
d iscussed .  We flew clocks t o  ThuLe, Greenland, l e f t  them four  days, and 
brought them back. Ve measured a time d i f f e rence  of 3 5  f 5 nanoseconds, 
and w e  c a l c u l a t e d  35 f 2 nanoseconds from i n e r t i a l  naviya t ion  and a i r  t o  

1 
ground da ta .  There i s  no anomalous l a t i t u d e  e f f e c t .  ?he " E i n s t e i n  
error", i f  t h a t  p r e d i c t i o n  were ca l cu la t ed  f o r  Washinqton t o  Zhule, 
would have been 2 2 4  nanoseconds over  fou r  days from a predic ted  r a t e  o f  
56nalday. The experiment provides  another demonstration, from this 
point  of view, o f  the e f f e c t  of the g r a v i t a t i o n a l  p o t e n t i a l  d i f ference 
which j u s t  compensates t h e  velocity effect . 

we have a l s o  done 
2 3  5 a: time of summer sol5t1ce 

experiments with E i n s t e i n ' s  
f r ee ly  falling l abo ra to ry  i n  
which we've used t he  e a r t h  i t s e l f  Drh~to l  ~ I U M  - 
as the f a l l i n g  l a b o r a t o r y .  me / i o r t h  , F~~~ Fcii 0 

5 un 
earth is  always falling f r e e l y  
towards t h e  sun, but it moves i n  
o r b i t  around t h e  sun and never 
fa l ls  i n .  I t s  s p i n  a x i s  i s  F i g u r e  49 
t i l t e d  23.5 degrees w i t h  r e spec t  



t o  t h e  plane of i t s  o r b i t ,  so t h a t  a t  the  time of the  s m e r  s o l s t i c e ,  
clocks i n  the  Northern Hemisphere are closer t o  t h e  sun than clocks i n  
t h e  Sauthern &misphere, as shown, with an exaggerated tilt, in Figure 
49. There's been a long-standing puzzle, o r  confusion, on t h e  p a r t  of - 
some people: on t h e  earth, should t h e  high clocks i n  t h e  sun's p o t e n t i a l  
run f a s t  with respect  t o  the l o w  clocks i n  the sun 's  p o t e n t i a l ?  9,10,11 

The answer is  no, by t h e  
P r inc ip le  of Equivalence, A 
w i l l  remember t h a t  g rav i ty  i s  W 
cancel led  l o c a l l y  i n  a f r e e l y  
f a l l i n g  Laboratory. We a c t u a l l y  
d i d  t h e  experiment by f l y i n g  
clocks from Washington t o  
Christchurch, New Zealand and 23.5 
back again. The disagreement and 
the  confusion i n  t h e  l i t e r a t u r e ,  
r e s u l t s  from people wanting t o  Sun ~ 6 r t h  
r e t a i n  t h e  l i n e a r  term i n  t h e  
expansion of the  p o t e n t i a l  about 
t h e  cen te r  of the  ea r th ,  a s  
, .birCrrhrrA :n E-4 m 7 * *  En rrL,.%-* 4 . 3  Figure 50 

an exce l l en t  paper by J . R .  Thomas from JPLiL, which does t h i s  
ca lcu la t ion  c o r r e c t l y .  m e r e  a r e  remaining second order terms i n  t h e  
expression of t he  p o t e n t i a l  which cause t i d a l  e f f e c t s ,  but  these  can be 
neglected i n  t h e i r  e f f e c t s  on current ly  ava i l ab le  clocks. In our 
experiments w e  found agreement between the calculated proper time 
d i f fe rence  and the  measured proper t i m e  d i f f e r e n c e ,  The r e s u l t s  are 
shown i n  t h e  fo l lowins  Thble. 

B .  Fbffmann, "Noon-Midnight Red Sh i f t , "  Physical Review, Vol. - 121 , 
337ff (1961). 

" R .  U. Sexl, "Seasonal Differences B e t w e e n  Clock Rates," Physics 
L e t t e r s  Vol. ~IB, pp 65ff (1976).  I 
' I W .  H. Cannon and 0.  G. Jensen, "Ter res t i a l  Timekeeping and General 
Rela t iv i ty :  A New Discovery," Science, Vol. 188, pp 317ff (1975).  lhe  
e r r o r s  i n  this paper have been pointed out  i n  many l e t t e r s  i n  
"Acceleration and Clocks, " Science, Vol. 3, pp 489-491 ( 1976) . Pie 
authors  have r e t r a c t e d  t h e i r  claims. 
l2 J . B. Thomas, "Reformulation of the  R e l a t i v i s t i c  Conversion Betwef!n 
Coordinate Time and Atomic Time," Astronodcal  Journal .  Val. 8 0 .  N o .  5, I 
pp 405ff (1975).  



FLIGHT 1 FLIGHT 2 
(10 - 17 ( 2 3  - 30 

Julv 1977)  J u l y  1977 )  

- (ns) 115 k 10 
('A T ~ )  measured 

131 f 10 

( T ~  - T B )  (ns 129 f 2 122 f 2 c a l c u l a t e d  

(Measured - Calcula ted)  (ns) -14 f 12 11 It 12 

Calculated Effect 
of Linear  T e r m  (ns; 8 0  f 2 7 0  f 2 

Note t h a t  t h e r e  is  no evidence f o r  t h ~  a l l e r~ed  e f f e c t  of t h e  linear 
term.  

m e s e  f l i g h t s  a l s o  po in t  up the  e f f e c t  on proper time of clock 
t ranspor t  by a i r c r a f t  . me fol lowing table d i sp l ays  the  c a l c u l a t e d  
proper  t imes us ing  data from t h e  on-board i n e r t i a l  naviga t ion  u n i t s  and 
plane-to-qround r a d a r  f a r  the d i f f e r e n t  legs of t h e  t r i p s .  

EFFECT O F  EARTH'S m T A T I O N  

F L I G H T  1 ( n s )  FLIGHT 2 (ns) 

Andrews Am t o  Travis AFB (E - Irl) 3 5 3 1 

Hickam Am t o  Chris tchurch (E - 1rl) 

I Christchurch to Hickam AFR (W - E) 16 16 

Hickam AFB t o  Rndrews A F T  (W - E) 
Dwell Time on Ground -3 - 3 I 
Note the l a r g e  d i f f e r e n c e  between Fast-West and West-Fast l e g s  caused by 
t h e  e a r t h ' s  r o t a t i o n :  I n  t h e  West-East d i r e c t  i o n  t h e  surf ace v e l o c i t y  
of t h e  e a r t h  adds t o  the  surface velocity of the aircraft, giv ing  a 
large v e l o c i t y  i n  t h e  i n e r t i a l  frame a t tached  t o  the cen te r  of the  earth 

3 
2 where t h e  calcu a t i o n s  a re  bes t  made. Tne l a r y e  v /2c2 very n e a r l y  

cance ls  the $ / c  i n  t h e  proper  time i n t e g r a l .  ?he e n t r i e s  in t he  t a b l e  
are t y p i c a l  o f  the e f f e c t s  t o  be expected for a n  a i r  speed of 500 knots 
and an altitude of 35,000 f e e t ,  c h a r a c t e r i s t i c  o f  j e t  aircraft. 

Let me show you a f e w  p ic tu res  of our global  f l i g h t s .  Figure 51 i s  
a polar view of a National  Geographic globe on which is marked the path 
of the flight from Washington t o  m u l e  and back. You can see  there is  a 
l a r g e  change i n  d i s t a n c e  from t h e  e a r t h ' s  s p i n  ax i s ,  producing a large  



Figure  51. Figure  52 

change i n  surface ve loc i ty .  Figure 52 shows t he  t i l t e d  e a r t h ,  the  sun 
being o f f  to the r i g h t  at the  time oP the summer s o l s t i c e .  The path 
f r o m  Andrews AFB i n  Washington to t he  Travis AFB i n  Cal i fornia  t o  Hickarn 
Field i n  H a w a i i ,  and down t o  Chr is t  Church is  marked. Figure 53 shows 
t h e  repackaged equi.prnent for f l y i n g  on an A i r  Force C141 t ranspor t  
plane. Figure 54 shows the equipment mounted on  a  ca rgo  p a l l e t  with t h e  
surrounding thermal p ro tec t ion  enc lo su re .  Figure 55 shows t h e  p a l l e t  
car ry ing the equipment b e i n g  loaded into the  C141. Figure 56 shows a 
l a t e r  s t e p  i n  t h e  loading process.  Figure 57 i s  a p i c t u r e  taken during 
one of t h e  f l i g h t s .  The equipment for recording t h e  inertial navigation 
systems and air-to-ground r a d a r  information from which t o  calculate t h e  
proper time i n t e g r a l  is on the t a b l e  on t h e  l e f t .  

Other experiments were done recent ly  by Bob Vessot and Marty 
~ e v i n e ' ~ ,  with a hydrogen maser i n  a rocket  probe, i n  which t h e  r a t i o  of 
the measured t o  predic ted  value was 1 + (2 .5 f 70) x This is 
b e t t e r  than a hundredth of a percent  confirmation. They measured 
frequency ra the r  t h a n  time d i r e c t l y ,  but the  same bas ic  equation t h a t  
we've heen working w i t h  had t o  be used. The great t h ing  about t h e i r  
experiment was the a b i l i t y  t o  e s s e n t i a l l y  cancel out the  Doppler e f f e c t ,  

5 and ionospheric, which is two p a r t s  i n  10 , sufficiently well  t o  measure 

l3 R. F. C.  Vessot and M. W. Levine, "A =st of the Equivalence 
Pr inc ip le  Using a Spaceborne Clock," General R e l a t i v i t y  and Gravi ta t ion ,  
VoL. 10, 80. 3, pp 181 -204 ( 1 7 9 ) .  - 
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L e f t :  

Figure 58 

R i g h t  : 

Figu re  

GEOMETRY OF ACCtLEHRTIONS. 
VELOCITY AND SIGNAL 

--. PROPAGATION VECTOHS 
I 

10 
t o  t h e  effect of the  p o t e n t i a l ,  which i s  only four y10 , by a very 
c leve r  three-frequency cance l l a t ion  scheme, Figure 58 shows the  Scout 
rocket  t h a t  was used i n  t h a t  experiment, and Figure 59 shows i t s  
trajectory r i s i n g  t o  several earth r a d i i  and f a l l i n g  back into t h e  
At lan t i c  Ocean. Unfortunately, t h e r e ' s  no time t o  go into more d e t a i l s .  

SOME APPLICATIONS 

L e t  u s  now consider  some practical engineering app l i ca t ions .  
Figure 60 is an  artist's view of the  GPS/NAVSTAR system, which I t h i n k  
now has only 18 s a t e l l i t e s  planned r a the r  than the  24 shown here. They 
a r e  i n  12 hour period o r b i t s ,  and they carry very good atomic clocks .  
The circular o r b i t s  are about 14,000 kilometers above t he  e a r t h ' s  
surface .  Figure 61 illustrates the way in which the  system works. A 

B e l o w :  F igure  60 

R i g h t  : 

Figure 6 1  



u s e r  receives L-band s i g n a l s  from each of several s a t e l l i t e s ,  c o n s i s t i n g  
of a coded bit stream whose r a t e  i s  s e t  hy the  onbaard atomic clock at 
10.23 MHz. The u s e r ' s  r e c e i v e r  i s  equipped with t h e  same code, which is 
shifted i n  time t o  lock on t o  t h e  satellite h i t  stream. By doing 
microprocessor  c a l c u l a t i o n s  f r o m  four  s a t e l l i t e s ,  t h e  u se r ' s  equipment 
f i n d s  ou t  where he i s  and a l s o  what the  t i m e  i s .  B u t  for a l l  of t h i s  t o  
work, the s a t e l l i t e  clocks must be synchronized with t h e  GPS master 
station. You have t o  a l low for t h e  g r a v i t a t i o n a l  p o t e n t i a l  and  motional  
effects of General R e l a t i v i t y ,  which we have been d i scus s ing .  

I n  t h e  Global Pos i t i on ing  S y s t e m ,  the  c a l c u l a t i o n s  can be made i n  
t h e  wav w e  have demonstrated. 

dr 
sat 

d-c 
ground 

2 

'sat 
v 
sat + -  - 

2 2 
) dt 

C 2 c 

v 
2 

'ground - ground + 
2 2 

at 
C 2 c 

I Dividing the equa t ions ,  and r e t a i n i n g  only the  cons tan t  and f i r s t  o r d e r  

-a L Y L I J U ~ ~ U  - - J U  L y& L d U L l i A  

= 1 + = a L  

dT 2 2 
ground c 2 c  

Eva lua t ing  t h i s  express ion  f o r  the NAVSTAR circular orbit, one finds, 

dr 
NAVSTAR 

dr 
ground 

This r e s u l t  means that i f  a NAVSTAR atomic clock has a c e r t a i n  r e l a t i v e  
r a t e  t o  t h e  G P S  master clock when t hey  are  side by s i d e  a t  a n  e l e v a t i o n  
corresponding t o  the  mean ocean su r f ace  ( t h e  su r f ace  used f o r  r e f e r ence  
i n  the  GPS system a s  w e l l  as fo r  U T )  -- s a y  2 0  ns/day -- this r a t e  will 
be inc reased  by 44,000 ns/day when the clock is  placed i n  o rb i t .  This 

Naval Research Laboratory with tl N TS- 2 
satellite. I 4  But  before  t h a t ,  t h e r e  had heen some doubt on the part  of 
some people a s s o c i a t e d  with t h e  G P S  proqram whether t h e s e  e f f e c t s  were 
a c t u a l l y  there.  I remember w e l l  a  meeting a t  t h e  GPS offices i n  the 
Spring of 19764, when Gernot Winkler, Len Cu t l e r  and I presented t h e  

l 4  T. McCaskill, J. White, S .  S tebb ins ,  and J.  ~ u i s s o n ,  "NTS-2 
Frequency S t a b i l i t y  Resul t s ,  " Proceedings of t h e  32nd Frequency i lontrol  
Symposium ( 1978) . 



r e s u l t s  of out  P3C a i r c r a f t  clock experiments when such quest ions were 
r a i sed .  

If t he re  is  some e c c e n t r i c i t y  t o  the  o r b i t ,  there  w i l l  be a  
pe r iod ic  change i n  t h e  d is tance  of the s a t e l l i t e  from t h e  cen te r  of t h e  
e a r t h .  For an e c c e n t r i c i t y  5 x the change i n  g r a v i t a t i o n a l  
potential is  anough t o  produce an  amplktude of 12 nanoseconds (peak t o  
peak of 24ns) w i t h  a 12 hour pe r iod ic  i n  the onboard clock reading. 
?his would produce an e r r o r  i n  pos i t ion  of 24  feet, i f  not allowed f o r .  

One must understand and include these  e f f e c t s  co r rec t ly ,  a s  the  G P S  
now does. For the  l a r g e  r e l a t i v i s t i c  o f f s e t  i n  clock r a t e  i n  o r b i t  of 
+44,000 ns/day, one a d j u s t s  the  clock so t h a t  on the  ground it would 
have a r a t e  of -44,000 ns/day with respect  t o  t h e  reference EPS clock.  
This compensates fo r  the  r e l a t i v i s t i c  e f f e c t  when it is put i n t o  
o r b i t .  Once t h i s  is  done, the re  i s  no longer a "g rav i t a t iona l  r ed  
( b l u e )  s h i f t "  on t ransmit ted  frequencies from the  s a t e l l i t e  t o  the  
ground, even though the  rad ia t ion  passes through a d i f ference  o f  
g r a v i t a t i o n a l  p o t e n t i a l  A$ . This mistake was made by one of the GPS 
con t rac to r s  during the  development of the  system. It is a na tu ra l  
mistake following from an o f t e n  presented der iva t ion  of t h e  blue shift 
i n  t e r m s  of the  energy of  a photon2 E = hv, a t  the  s a t e l l i t e ;  the mass 
equivalent  of the  photon, rn = hu/c ; and the gravitat ional .  energy 
change . If hV' is the energy of the  photon a t  the  ground, energy 
conservation gives t h e  equation 

2 
hv' = hv + (hv/c ) A $  

This argument does not hold i f  the  clocks have been adjus ted  a s  
described above. 

There is an upcoming experiment ca l l ed  LASSC), Laser *chronization 
from Stat ionary Oshit ,  being done by the  European Space with 
t h e  f i r s t  opera t ional  Launch of the  ARIANE rockets ,  cu r ren t ly  scheduled 
for April 1982.  'Ihe experiment is on t h e  S i r i o  2 s a t e l l i t e ,  a s  shown i n  
Figure 6 2 .  There will be corner r e f l e c t o r s ,  an avalanche photodiode 
detec tor ,  an event timer and a c r y s t a l  clock on the  s a t e l l i t e .  Laser 
pulses  w i l l  be f i r e d  a t  t h i s  synchronous s a t e l l i t e  from the 1.2m 
te lescope a t  the  Goddard Opt ica l  Research Facility i n  a cooperat ive 
undertaking by the  U .  S .  Naval Observatory, the  Universi ty of Maryland, 
and NASA; and from severa l  l a s e r  s t a t i o n s  i n  Europe. The technique i s  

l 5  B. E. R. Serene, "Progress of the LAS9) Expefiment," Proceedings o f  
t h e  l b e l f t h  Annual Prec ise  Time and Time I n t e r v a l  (PT!CI) ~ ~ ~ l i c a t i d n s  - - 
and Planning Meeting; NASA Conference Publicat ion 2175, pp 307 - 327, - 
December 2 - 4, 1980. 



F i g u r e  6 2  Figure 6 3  

e s s e n t i a l l y  the  same as t h a t  used i n  the  P3C a i r c r a f t  experiments.  The 
goal for t h e  f i r s t  experiments is  one nanosecond  synchronizat ion between 
t h e  United S t a t e s  and Europe. I t  i s  hoped t h a t  t h i s  w i l l  be the  first  
of a ser ies  of s a t e l l i t e  experiments w i t h  t h e  goal of one t e n t h  of a 
nanosecond sy~lchl tonizat ion l a t e r  on. Since t h e  comparisons on the 
s a t e l l i t e  w i l l  be made r a t h e r  c l o s e  i n  time, we don ' t  have t o  worry ton 
much ahout the  r e l a t i v i s t i c  e f f e c t ,  but  we j u s t  note t h a t  it i s  on t h e  
order of 50,0110 nanoseconds per  day, or about 6/10ths of a nanosecond 
per  second. E o  i f  one has a goal of one nanosecond and one l e t s  t he  
recept ion  between pu l se s  spread over a few seconds, you may have t o  
worry a bit about t h i s  e f f e c t .  

There is a t h i r d  space experiment which T wish t o  d iscuss  this 
a f t e rnoon .  This i s  t h e  proposed % u t t l e  Time and Frequency - Transfer  
experiment which w e  call S T I F T .  The p l a n  h a s  been z v e l u p e d  by D. W. 
A l l a n  of t h e  National. Rureau o f  Standards,  Rudolf Decher of t h e  Marshall  
Space Flight Center,  Gernot  Winkler of the U . S .  Naval Observatory, and 
t h e  speaker .  l 6  The idea i s  shown i n  Figure 63 .  There would be a 
hydrogen maser and other clocks on the  s h u t t l e ,  a long  with microwave 
frequency comparison equipment of tlie type developed by Vessot, et ax., 
f o r  t h e  rocket probe relativity experiment, and Laser pulse time 
comparison equipment of t h e  type developed by Alley, e t  a l . ,  f o r  t h e  P3C 

l6  R .  Decher, D. W. Allan, C .  0. Alley, R .  F .  C .  V ~ S S O ~ ,  and G .  M. R .  

Winkler, " A Space System f o r  High-Accuracy Global Time and Frequency 
Comparison of (Zocks," Proceedings -- o f  t h e  TkeLfth Annual P rec i se  ~ i m e  -- - 
and Time I n t e r v a l  ( PTTI ) Applicat ions a n d  Planning Meeting; NASA -- 
Conference Publ ica t ion  2175, pp 99 - 111, December 2 - 4,  1980. 



aircraft relativity experiments. It now appears that t he  principal 
uncertainty i n  the STIPT technique w i l l  be that imposed on the 
calculation of t h e  proper t ime i n t e g r a l  by lack of knowledge of the 
velocity of the space shuttle. 

For a several hundred kilometer o r b i t ,  

- 14 
I f  we wish t o  maintain a f r a c t i o n a l  time uncertainty AT/T = 10 which 
the hydrogen maser is capable of ,  one must have 

This requires that Av = 10crn/sec. This may be very difficult t o  know 
without  special instrumentation such as high quality inertial navigation 
systems. For this technique,  the limiting performance for time transfer 
may be set by r e l a t i v i t y  rather t h a n  by clock performance! 



QUESTIONS AND ANSWERS 

DR. WINKLER: 

Maybe one comment i s  i n  o rde r  and t h a t  i s  i n  Pro fessor  Whee le r ' s  
concept t h a t  t h e  space geometry, o r  space t ime  geometry has t o  t e l l  
t h e  p l a n e t s  where t o  go. 

Th is ,  t o  me, seems l i k e  a  s tep  backwards. Because 300 yea rs  
ago Kep le r  had much more d e f i n i t e  ideas.  He had an angel push ing 
t h e  p l ane t s .  

PROFESSOR ALLEY: 

Some of Wheeler 's r e c e n t  t h i n k i n g  goes much beyond t h a t .  What t h i s  
i s ,  though, i f  you want t o  be a genuine r e l a t i v i s t ,  as, say, i n -  
t e r p r e t e d  by Wheeler and h i s  school i n  t h e  l a s t  30 years ,  you t h i n k  
of no more Newtonian f o r ces ,  no more angels .  You have curve  space 
t i m e  as d i sp l ayed  by t h i s  m e t r i c ,  w i t h  these m e t r i c  c o e f f i c i e n t s .  
And then  you t r y  t o  move as s t r a i g h t  as you can i n  t h e  cu rve  space 
t ime.  And you end up go ing  around t h e  sun i n  an e l l i p t i c a l  o r b i t .  
And, fu r the rmore ,  you g e t  t h e  p recess ion  o f  the p e r i h e l i o n .  You 
g e t  t h e  d e f r a c t i o n  of l i g h t .  P lus  a l l  these  r a t h e r  remarkable  
t h i n g s  t h a t  people  a r e  now c a l c u l a t i n g  b u s i l y .  

Suppose you ' ve  g o t  a r o t a t i n g  b l ack  ho le  and m a t t e r  f a l l i n g  
i n .  T h i s  whole t h e o r y  has t o  be app l i ed .  And you can g e t  these 
j e t s  coming ou t ,  and enormous energ ies,  and what no t .  

VOICE: 

Wi th  r ega rd  t o  t h e  suggest ion you can m u l t i p l y  and g e t  f rom t h e  
base l i n e ,  do you a n t i c i p a t e  t h e  source i s  go ing  t o  be c l o s e r  than  
a parsec? Or a r e  you go ing  t o  g e t  down i n t o  b i l l i o n t h s  o f  a parsec? 

MR. MANKINS: 

For what? The source of  t h e  g r a v i t a t i o n a l  wave? 

VOICE: 

Yes. 

MR. MANKINS: 

The source would be very ,  v e r y  d is tance .  Many parsec. 



VOICE : 

May I suggest you f o r g e t  you r  second exper iment? 

MR. MANKINS: 

Wel l ,  if t h e  g r a v i t y  wave propogates a t  t h e  speed o f  l i g h t ,  then 
f o r  a maximum angle,  i .e . ,  say i t  came p e r p e n d i c u l a r l y  on t h e  base 
l i n e  between t h e  two s t a t i o n s ,  t h e r e  would be some t ime  de lay  be- 
tween i t s  a r r i v a l  a t  t h e  two s t a t i o n s  on t h e  o rde r  o f  a 3 0 t h  o f  a 
second. Which i s  v e r y  l a r g e  f rom f requency and t i m i n g  values. 
Microseconds. 

And t h a t ' s  a l l  you would be l o o k i n g  f o r  i s  t h e  t ime  de lay  be- 
tween t h e  a r r i v a l  a t  t h e  two s t a t i o n s .  

VOICE: 

The o t h e r  ques t i on  had t o  do w i t h  t h e  uniqueness o f  t h i s  p a r t i c u l a r  
event.  I n  your  exper imenta l  cons ide ra t i ons ,  do you have any bas i s  
f o r  l o o k i n g  t o  see whether t h i s  i s  an a c t  of na tu re ,  a g r a v i t y  wave, 
an acc iden t  i n  da ta  process ing? 

MR. MANKINS: 

Wel l ,  t h a t  would be one o f  t h e  good p o i n t s  about hav ing two s t a t i o n s .  
W i th  a s i n g l e  s t a t i o n  and a s i n g l e  spacecraft  you a r e  more sub jec t  t o  
some acc iden t .  

Where i f  you had two s t a t i o n s ,  and bo th  o f  them independent ly  
recorded t h e  event,  you ' r e  safer  f rom acc iden ts .  

A1 so i f  you ' ve  g o t  some r e a l  c o r r e l a t i o n .  

SECOND VOICE: 

How f r e q u e n t l y  do these g r a v i t y  waves occur,  so t h a t  you know how 
l o n g  t o  l o o k  f o r  them? 

MR. MANKINS: 

I b e l i e v e  i n  t h e  paper by Thorne and B reg insk i ,  c i r c a  1975, t h a t  
t h e y  a n t i c i p a t e d  pe r i ods  somewhere between a week and 10 years f o r  
a s i n g l e  event.  

Bu t  the, 1 i ke I say, those numbers were v e r y  cosmologica l ,  
i . e . ,  sub jec t  t o  change. 



P R O F E S S O R  ALLEY: 

I t  i s  possible t h a t  the low frequency gravi ty  waves t h a t  you might 
de tec t  t h i s  way could be a r e s u l t  o f  primordial c o n d i t i o n s  in the 
universe, i f  the big bang, and  so on, i s  correct .  

There could well be some rumbling, rumbling thunder of gra-  
v i t y  waves throughout the  whole universe. 

MR. MANKINS: 

S t i l l  wandering a b o u t .  

P R O F E S S O R  A L L E Y :  

Might be p i c k e d  u p .  




